LITTLE WHITE OAK CREEK STREAM RESTORATION

POLK COUNTY, NORTH CAROLINA
CONTRACT \# D06027-B

Prepared For:

Ecosystem Enhancement Program
Department of Environment and Natural Resources
1652 Mail Service Center
Raleigh, NC 27699-1652

ANNUAL MONITORING REPORT (YEAR 4 OF 5)

Owner

NCDENR
Ecosystem Enhancement Program
Department of Environment and Natural Resources
1652 Mail Service Center
Raleigh, NC 27699-1652
EEP Project Manager: Guy Pearce
Phone:
(919) 715-1656

Design and Monitoring Firm

Mulkey Engineers and Consultants
6750 Tryon Road
Cary, North Carolina 27518
Phone: (919) 851-1912
Fax: (919) 851-1918

Project Manager: Wendee B. Smith
Phone:
(919) 858-1833

Project Engineer: Emmett Perdue, PE
Phone: (919) 858-1874

Table of Contents

1.0 Executive Summary 1
2.0 Project Background 3
2.1 Project Location and Setting 3
2.2 Project Goals and Objectives 3
2.3 Project Restoration Approach and Mitigation Type 4
2.4 Project History 5
2.5 Project Monitoring Plan View 5
3.0 Project Condition and Monitoring Results 6
3.1 Project Vegetation Monitoring 6
3.1.1 Vegetation Monitoring Methodology 6
3.1.2 Vegetation Monitoring Success Criteria 7
3.1.3 Vegetation Monitoring Results for Year 1 of 5 8
3.1.4 Vegetation Monitoring Results for Year 2 of 5 8
3.1.5 Vegetation Monitoring Results for Year 3 of 5 9
3.1.6 Vegetation Monitoring Results for Year 4 of 5 10
3.2 Project Stream Monitoring 10
3.2.1 Stream Monitoring Methodology 10
3.2.2 Stream Monitoring Success Criteria 13
3.2.3 Stream Monitoring Results for Year 1 of 5 15
3.2.4 Stream Monitoring Results for Year 2 of 5 15
3.2.5 Stream Monitoring Results for Year 3 of 5 20
3.2.6 Stream Monitoring Results for Year 4 of 5 23
4.0 Project Monitoring Methodology 26
5.0 References 27

Figures

Figure 1. Location Map
Tables
Table I. Project Restoration Approach and Mitigation Type
Table II. Project Activity and Reporting History
Table III. Project Contacts
Table IV. Project Background
Table V. Stem Counts Monitoring Year 4 for Each Species Arranged by Plot
Table VI. Vegetative Problem Areas
Table VII. Baseline Morphology and Hydraulic Summary
Table VIII. Morphology and Hydraulic Monitoring Summary
Table IX. BEHI and Sediment Transport Estimates
Table X. Verification of Bankfull Events
Table XI. Categorical Stream Feature Visual Stability Assessment
Table XII. Stream Problem Areas

Appendices

Appendix A. Monitoring Plan View

Appendix B. Vegetation Plot Photos
Appendix C. Reference Point Photos
Appendix D. Cross Section Photos
Appendix E. Raw Data

1.0 Executive Summary

This annual monitoring report details the fourth year monitoring activities and their results for the Little White Oak Creek Stream Restoration Site (LWOC). All of the monitoring activities were conducted and the subsequent results are reported in accordance with the approved mitigation plan (Mulkey Engineers and Consultants, 2008) for LWOC. The content and format of this report were developed in accordance with the contract requirements for the Full Delivery RFP 16-D06027 (NCEEP, 2005). Accordingly, this report includes project background information, project monitoring results, and description of the project monitoring methodology.

Mulkey Engineers and Consultants (Mulkey) submitted LWOC for the Full Delivery RFP 16-D06027 to provide 18,200 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract and began work on the project on May 16, 2007 The primary goals of LWOC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat. These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for 18,290 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

LWOC is located in Polk County, North Carolina near the community of Mill Springs and is situated in the Broad River Basin. Past land use practices, including extensive cattle farming, stream channelization and dredging, and clearing of the riparian buffers resulted in substantial degradation of the stream systems at LWOC. LWOC is comprised of seven stream reaches totaling 18,290 feet of restored stream channel. All of the analyses, design, and restoration at LWOC were accomplished using natural stream channel design methods. In addition to stream channel restoration, the restored stream banks and the riparian and upland buffer areas along LWOC were also replanted with native species vegetation.

The survivability of the planted vegetation at LWOC was monitored at representative vegetation plots as well as project-wide. Stem counts, photo documentation and comparison, and visual assessment were utilized. Bare root stock were planted at a density of 680 stems per acre (8 foot by 8 foot spacing) and live stakes were planted on the stream banks at a density of 1,742 stems per acre (5 foot by 5 foot spacing). A total of 24 representative vegetation plots were installed at LWOC based on the recommendations set
forth by EEP regarding the acreage contained in the conservation easement. The survivability of the planted woody vegetation at LWOC was monitored using annual stem counts at each of the plots. In addition to the stem counts, annual photos were taken at each of the plots and also from 14 other permanent photo reference points. The vegetation plot photos were used for photo documentation and comparison of the vegetation growth at each plot. The photo documentation at the reference points were employed to assist in a projectwide visual assessment of the vegetation at LWOC. Survivability will be based on achieving a minimum of 320 stems per acre after Year 3 and 260 stems per acre after Year 5 , across the project site. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to insure survival throughout a complete growing season while still allowing for relative ease in identification.

Mulkey relocated portions of the fence surrounding the easement around LWOC during the Spring of 2010. This was performed at the request of NCEEP to ensure the entire easement was protected from cattle and to include the required 50 foot buffer established by the United States Army Corps of Engineers. On February 23, 2011, woody vegetation was planted within the new areas created by fence relocation.

During the middle of October 2011, the vegetation monitoring for Monitoring Year 4 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 325 stems being counted in 24 vegetation plots. These plots have a survivability of planted woody stems ranging from 327 to 917 stems per acre. The survival level of the planted woody vegetation at LWOC was maintained from Year 3 to Year 4. The site is on track to meet the success criteria established for Year 5 described above. Visual comparison of the vegetation plot and permanent photos clearly show the significant growth that has taken place over the last 4 years. The project-wide visual assessment also confirmed a sustained growth trend, as no vegetative problem areas were observed.

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored to evaluate the success of stream restoration at LWOC. The limits of the project stream reaches to be monitored at LWOC were determined using the sampling rates outlined by the USACE et al. (2003). The monitoring was conducted using annual field surveys, pebble counts, crest gage recordation, visual assessment and photo documentation. Baseline conditions for comparison of the stream parameters to be monitored were established from data gathered immediately after construction through the as-built survey process. Longitudinal profiles and Modified Wolman pebble counts were conducted for all reaches and a total of 13 permanent cross sections were surveyed and photo documented across LWOC. A total of eight crest gages across LWOC were installed for hydrologic monitoring to verify the occurrence of bankfull storm events. Annual photo documentation was used for stream monitoring to complement and validate the other stream monitoring practices from 14 permanent reference photo points. Annual project wide visual assessment was conducted using field observation and pedestrian surveys to identify any specific problem areas. BEHI information was not collected during the current year since it is only required during Monitoring Years 3 and 5. Stream restoration success at LWOC was evaluated by comparison of the annual monitoring results against those same parameters as
predicted, specified, and required in the proposed design and as implemented during the construction process represented by the as-built or baseline conditions. Success was achieved when all such comparisons reveal positive trends toward overall stream stability.

During the early months of 2011, repairs were conducted on the floodplain benches and terraces of R1 and R2 following a large flood event in 2010. These repairs were highly successful in improving the benches and terraces throughout these two reaches. Visual assessments of these areas do not show any future areas of concern.

During November 2011, the stream monitoring for Monitoring Year 4 was conducted using the methodologies described above. The stream dimension, pattern, and profile remained consistent with the 3 previous years' data and continue to remain within the tolerances of the design parameters. All reaches have maintained stable C type stream channels throughout the past 4 years of monitoring. Bed materials have also remained stable with only slight fluctuations; however one reach experienced significant coarsening over the last monitoring period. The compilation of four years of monitoring data strongly suggests that the LWOC project is trending toward a restored, stable stream system.

Therefore, based on the positive trends from the Year 4 monitoring data, Mulkey does not propose any actions other than to proceed with the final year of monitoring.

2.0 Project Background

2.1 Project Location and Setting

The Little White Oak Creek Stream Restoration Site is located in Polk County, North Carolina approximately 2.5 miles east/southeast from the community of Mill Springs along NC Highway 9 South, and approximately 0.5 mile northwest from the intersection of NC Highway 9 South and US Highway 74 (Figure 1). LWOC is situated in the Broad River Basin 8 -digit cataloging unit of 03050105 and the 14-digit cataloging unit 03050105030010. Mulkey proposed to provide 18,200 Stream Mitigation Units (SMUs) with LWOC under the Full Delivery RFP 16-D06027 issued by the Ecosystem Enhancement Program Department of Environment and Natural Resources (NCEEP). Mulkey acquired and installed permanent fencing along an easement covering 55.3 acres, which encompasses the restored streams and associated buffers at LWOC.

2.2 Project Goals and Objectives

The primary goals of LWOC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat.

These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for 18,290 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

2.3 Project Restoration Approach and Mitigation Type

LWOC is comprised of three main reaches (R1, R2 Upper and R2 Lower) and four tributaries (R1A, R2A, R2B and R2D). Prior to construction, these seven reaches were identified and proposed for restoration due to their distinct stream characteristics and drainage areas. These seven existing reaches totaled approximately 15,487 linear feet. A total of 18,290 linear feet of stream channel was restored at LWOC within the 55.3 acre conservation easement.

Analyses, design, and restoration of the stream channels at LWOC was accomplished using Natural Stream Channel design methods developed by Rosgen (Rosgen, D. L., 1994, 1996, 1998). The proposed Rosgen channel type for two of the tributaries (R2A and R2B) was a C4 channel. The restoration of these tributaries was implemented using Priority Level I and II methodologies. The proposed stream classification for the majority of the reaches (R1, R1A, R2 Upper, and R2 Lower) was a C5 channel. A combination of Priority Level I and II methods were used to construct these reaches. The remaining reach (R2D) was proposed to be a C6 channel using the same methods previously mentioned.

The most significant stream restoration component at LWOC involved the reconstruction of each of the stream reaches such that stream flows greater than bankfull are allowed to access the restored stream's floodplain. Two different approaches were used to insure such floodplain access. The first approach involved relocating and raising the stream bed such that the historic floodplain is accessed by stream flows greater than bankfull (the sections of the project stream reaches that were restored using Priority Level I methodologies). A second approach was used where site constraints prevented such relocation and raising of the stream bed. Therefore the second approach involved building a floodplain at a level lower than the historic floodplain through the construction of bankfull benches (the sections of the project stream reaches that were restored using Priority Level II methodologies). Instream structures were installed along each of the stream reaches to provide grade control and stream bank protection, and to increase in-stream habitat diversity. The in-stream structures installed included rock cross vanes, j-hook rock vanes, rock vanes, constructed riffles, and root wads. Stream banks were further stabilized through the installation of coir fiber erosion control matting, temporary and permanent seeding, and the installation of native species vegetation in the form of transplants, live stakes, and bare root stock. All areas of the site that were disturbed during construction activities were stabilized using
temporary and permanent seeding. The riparian and upland buffer communities along LWOC were also restored with native species vegetation using a target community which will emulate the Piedmont/Low Mountain Alluvial Forest described by Shafale and Weakley (1990). The conservation easement was fenced to permanently protect the restored stream and buffer areas. Information regarding the restoration approach and mitigation type for each of the seven project stream reaches is detailed in Table 1.

2.4 Project History

The existing conditions at LWOC prior to restoration were a result of cattle use for the past 50 years. When Mulkey initially became involved with this project, there were approximately 200 livestock (cattle and horses) utilizing the pastures. The livestock had never been fenced from any of the stream channels within LWOC. This continual livestock access to the streams resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and heavy siltation throughout LWOC, as well as reduced water quality due to large quantities of fecal matter into the stream system. Based on information gained from the property owner, it was determined that many of the streams at the LWOC, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. As a result of these land and water quality issues, Mulkey submitted LWOC for the Full Delivery RFP 16-D06027 to provide 18,200 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the NCEEP and began work on the project on May 16, 2007. The project activity and reporting history are detailed in Table II. Table III lists the contacts for the designer, contractor, relevant suppliers, and monitoring firm for LWOC. Table IV provides a complete listing of project background information.

2.5 Project Monitoring Plan View

Mulkey conducted monitoring baseline surveys along the entire length of each of the restored project stream reaches using total station survey equipment. These surveys were conducted to establish and document baseline conditions for the newly restored stream channels for future monitoring activities. As-built drawings were developed using the results of the monitoring baseline surveys. These drawing depicted the post construction condition of LWOC and are included in Appendix A. The as-built drawings consisted of plan sheets that include the following:

- Title sheet
- Legend sheet
- As-built planimetric drawing developed from aerial photography of LWOC after the completion of construction
- As-built planimetric drawings and profiles developed from the baseline monitoring field surveys

The as-built drawings illustrate the location of all major project elements, including, but not limited to the:

- Restored stream channel thalweg, normal edges of water, constructed bankfull channel limits, and the constructed cut slope limits
- Conservation easement boundaries
- Permanent fencing limits
- Topography
- In-stream structures
- Photo points
- Crest gages
- Vegetation plots locations
- Permanent cross sections
- Project survey control
- Monitoring profile survey limits
- Relevant structures and utilities

3.0 Project Condition and Monitoring Results

3.1 Project Vegetation Monitoring

3.1.1 Vegetation Monitoring Methodology

The survivability of the planted vegetation at LWOC, including both woody and herbaceous species, was monitored at representative vegetation plots as well as project-wide. Monitoring at representative vegetation plots focused primarily on planted woody vegetation and was conducted using stem counts and photo documentation. Project-wide monitoring of planted vegetation included both woody and herbaceous species and was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction was completed during the last week of November 2007. Throughout construction, appropriate temporary and permanent seeding was conducted to stabilize areas disturbed during construction. Appropriate existing native species vegetation was also salvaged, where feasible, in the form of transplants and live stakes, throughout the construction process. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of November and December 2007. These remaining plant materials consisted of native species bare root seedlings and live stakes and were installed, as appropriate, to restore the riparian and upland buffer communities along LWOC within the conservation easement area. A complete listing of the planting zones, their corresponding acreages, and the corresponding vegetation species was included in the approved mitigation report (Mulkey Engineers and Consultants, 2008). The bare root stock were planted at a density of 680 stems per acre (8 foot by 8 foot spacing) and the lives stakes were planted on the stream banks at a density of 1,742 stems per acre (5 foot by 5 foot spacing).

An As-Built Survey was initiated immediately following the installation of plant materials. In December 2007, during the as-built survey and after the completion of planting, a total of 24 representative vegetation plots (vegetation plots 1 through 24) were installed randomly across LWOC. An iron pipe was installed at each plot corner for monumentation and a
polyvinyl chloride (PVC) pipe, along with a label specifying the plot number, was also installed at one of the corners of each plot. The plot corners were strategically located such that each plot has a total area of approximately 100 square meters. Between January and February 2008, after the establishment of the plots, all stems contained in the plots were identified and tallied by species and plot, then marked with loosely tied survey flagging (on lateral branches) to facilitate future identification. This data was recorded to provide the baseline survivability. The survivability of the planted woody vegetation at LWOC for the various monitoring periods was then calculated using annual stem counts at each of the plots and compared to the baseline data. During each of the annual stem counts, the planted stems were re-flagged as required to ensure that all planted stems were accounted for and considered in the survivability calculations. In addition to the stem counts, photos were taken at each of the plots. Where necessary, the corner of each plot was remarked with PVC pipe and the plot number relabeled. This PVC plot corner was used as the reference point from which the annual vegetation plot photos were taken such that the photos at each plot will have the same orientation. The photos were compared to the photos from the previous years to validate and document vegetation success. In addition to the photo reference points established at each of the vegetation plots, a total of 11 additional permanent photo reference points were installed across LWOC. Subsequently, three additional permanent photo reference points (photo points $2.5 \mathrm{Y} 1,3.5 \mathrm{Y} 1$, and 8.5 Y 1) were added during the Year 1 monitoring period to ensure adequate photo documentation would be conducted within the monitoring limits of the project stream reaches. These additional permanent photo reference points were monumented using steel rebar and PVC pipe. Photos were taken from each of the 14 permanent photo reference points with the same orientation each applicable year and used for photo documentation and annual comparison of the vegetation growth across LWOC. This exercise helped to further validate and document vegetation success at LWOC. Between January and February 2008, after installation of the described 11 permanent photo reference points, photos were taken from each of the permanent photo reference points to document the baseline conditions at LWOC with regards to planted vegetation. Monitoring Year 1 and Monitoring Year 2 photos were taken from all 14 photo points during the visit in August 2008 and October 2009, respectively. Project-wide visual assessment was also used for vegetation monitoring at LWOC. A visual assessment was conducted using annual field observation and pedestrian surveys to identify any specific vegetation problem areas at LWOC during the monitoring period. Any problem areas where vegetation was lacking or exotic vegetation was present, was identified and categorized as bare bank, bare bench, bare floodplain, or invasive population. Such areas were documented using representative photos and their locations were identified on the Monitoring Plan View.

3.1.2 Vegetation Monitoring Success Criteria

Vegetation success at LWOC was determined by stem survivability. Successful survivability is dependent upon achieving at least 320 stems per acre after three years and 260 stems per acre after five years across the project site. Therefore, survivability rates exceeding these requirements in previous years were deemed successful. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification. As described above, photo documentation and visual
assessment was used to complement the stem counts as part of the vegetation monitoring protocol at LWOC. If during any given year, the planted species survivability was not anticipated to meet the final criteria established for vegetation; supplemental plantings were considered. In the event this occurred, a remedial planting plan was developed to achieve the survivability goals established for Years 3 and 5 .

3.1.3 Vegetation Monitoring Results for Year 1 of 5

In late August 2008, the vegetation monitoring for Monitoring Year 1 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at LWOC for Monitoring Year 1. Stem counts were conducted at each of the 24 vegetation plots and the results are summarized in Table V. Photos were taken from the photo reference points at each of the 24 vegetation plots. Appendix B compares these photos with the initial baseline photos taken from the photo reference points at each of the 24 vegetation plots. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points and provided the baseline photos for the 3 points installed during the Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment. The results of the Monitoring Year 1 stem counts showed that the 24 vegetation plots had successfully achieved the survivability of planted woody vegetation with stem counts ranging from 438 to 1000 stems per acre, with an average survivability of 713 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC should meet the success criteria defined in Section 3.1.2. During the stem counts, it was noted no significant volunteer woody species were observed at any of the 24 vegetation plots. The comparison of the baseline and Monitoring Year 1 photos at both the 24 vegetation plot photo reference points and the 11 permanent photo reference points strongly complemented this suggestion, as no concerns, problems, or negative trends were documented. The project-wide visual assessment provided further validation, as no vegetation problem areas were observed. Based on the results of the vegetation monitoring for Monitoring Year 1 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.4 Vegetation Monitoring Results for Year 2 of 5

In mid-October 2009, the vegetation monitoring for Monitoring Year 2 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 2. Stem counts were conducted at each of the 24 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes and compares the results of the initial stem counts from the original planting, the previous years, and Monitoring Year 2. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected photos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points from Year 0 and the photos
from the 14 total permanent photo reference points in Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI. The results of the Monitoring Year 2 stem counts continued to display successful survivability in all 24 vegetation plots with the counts ranging from 367 to 1000 stems per acre and an average survivability of 670 stems per acre. Therefore survivability of the planted woody vegetation at LWOC should meet the success criteria established in Section 3.1.2. Similar to Monitoring Year 1, no significant volunteer woody species were observed at any of the 24 vegetation plots. The comparison of the Monitoring Year 2 photos to those previously collected at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points suggested the vegetation was growing exceptionally well. Live stake vegetation has exceeded growth expectations and the bare root material is starting to overcome the weedy vegetation. A further review of the vegetation through the project-wide visual assessment validated this positive trend, as no concerns, problems, or negative trends were documented. Based on the results of the vegetation monitoring for Monitoring Year 2 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.5 Vegetation Monitoring Results for Year 3 of 5

In early November 2010, the vegetation monitoring for Monitoring Year 3 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 3. Stem counts were conducted at each of the 24 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes and compares the results of the initial stem counts from the original planting, the previous years, and Monitoring Year 3. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected photos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points from Year 0 and the photos from the 14 total permanent photo reference points in Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI. The results of the Monitoring Year 3 stem counts continued to display successful survivability in all 24 vegetation plots with the counts ranging from 327 to 917 stems per acre and an average survivability of 557 stems per acre. Therefore survivability of the planted woody vegetation at LWOC meets the success criteria established in Section 3.1.2. for Year 3 and is on track for success in Year 5. Additional uncounted volunteer woody species were observed at all of the 24 vegetation plots. The comparison of the Monitoring Year 2 photos to those previously collected at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points suggested the vegetation was growing exceptionally well. Live stake vegetation has exceeded growth expectations and the bare root material is starting to overcome the weedy vegetation. A further review of the vegetation through the project-wide visual assessment validated this positive trend, as no concerns, problems, or negative trends were documented. Based on the results of the vegetation monitoring for Monitoring Year 3 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the
annual vegetation monitoring. The only additional plantings that will be utilized are associated with the repair work discussed in Section 3.2.5.

3.1.6 Vegetation Monitoring Results for Year 4 of 5

During October 2011, the vegetation monitoring for Monitoring Year 4 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 4. Stem counts were conducted at each of the 24 vegetation plots and Table V presents the results for each of the plots. This table includes and compares the results of the initial stem counts from the original planting through 5 years of monitoring. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected photos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares the permanent photo reference points for the current and previous years, showing reachwide views of the woody vegetation growth across the entire site. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI.

The results of the Monitoring Year 4 stem counts continue to display good survivability in all 24 vegetation plots with the counts ranging from 327 to 917 stems per acre with an average survivability of 553 stems per acre. Therefore survivability of the planted woody vegetation at LWOC is on track to meet the success criteria outlined for Year 5 (Section 3.1.2.). In Year 4, 325 stems were tallied, which represents a 71% survival rate since the site was planted. Additional uncounted volunteer woody species were also observed at all of the 24 vegetation plots. A comparison of the Monitoring Year 4 photos to those previously collected suggests that the vegetation is growing exceptionally well. Live stake vegetation has continued to exceed growth expectations. The bare root material is becoming more dominant within the plant community with some species reaching 10 to 15 feet in height. Briers and grasses still comprise large portions of several vegetation plots, making them difficult to navigate during monitoring. The project-wide visual assessment indicated a positive growth trend and did not find any concerns or problem areas throughout the site.

Based on the results of the vegetation monitoring for Monitoring Year 4 at LWOC, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.2 Project Stream Monitoring

3.2.1 Stream Monitoring Methodology

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored to evaluate the success of the stream restoration activities at LWOC. The monitoring of stream dimension, pattern, and profile, or morphometric monitoring, along with the monitoring of stream bed material, were conducted using annual field surveys along with visual assessment. The morphometric, stream bed material, and stream bank stability monitoring were conducted along representative sections of the project
stream reaches. Hydrologic monitoring consisted of field measurements of bankfull events using crest gages. Project-wide stream monitoring was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction were completed during the last week of November 2007. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of November and December 2007. The as-built survey of all of the stream reaches at LWOC were initiated immediately following the installation of plant materials and were conducted utilizing aerial photography and total station surveys while following the protocols set forth by the 2003 USACE Stream Mitigation guidelines (USACE et al., 2003). In addition to documenting the construction of LWOC for comparison to the proposed design, the results of the as-built survey were also used to establish baseline morphology for the proposed monitoring. This information is presented in Table VII. A summary of the restored stream channel lengths are outlined in Table I. A complete set of As-Built Drawings including a monitoring plan view and longitudinal profile for the as-built conditions of the restored channels can be found in Appendix A. After the completion of the as-built survey, the limits and corresponding lengths of the project stream reaches to be monitored at LWOC were determined using the sampling rates outlined by the USACE et al. (2003). A total of 5,893 linear feet (32%) of all restored stream channels will be surveyed annually during the monitoring period. Based on these the sampling rates, the limits of the project stream reaches to be surveyed annually for monitoring are as follows:

Reach R1-1,974 Linear Feet Total (Stations 14+00-R1- through 33+74-R1-)
Reach R1A - 500 Linear Feet Total (Stations 0+00-R1A- through 5+00-R1A-)
Reach R2 - 2,047 Linear Feet Total (Stations 25+13-R2- through 45+60-R2-)
Reach R2A - 326 Linear Feet Total (Stations 0+00-R2A- through 3+26-R2A-)
Reach R2B - 551 Linear Feet Total (Stations 9+35-R2B- through 14+86-R2B-)
Reach R2D - 495 Linear Feet Total (Stations 2+84-R2D- through 7+79-R2D-)
The upstream and downstream limits of these reaches were monumented in the field using steel rebar/PVC pins. Each pin was also labeled with an aluminum tag identifying the respective reach and the correct descriptor ("begin" or "end").

A total of 13 permanent cross sections, consisting of both riffles and pools, were established across LWOC and surveyed during the as-built survey process. The number of cross sections was determined using the sampling rates outlined by the USACE et al. (2003). The left and right ends of each cross section were monumented with a steel rebar pin and PVC pipe. An aluminum tag identifying the cross section number was also installed at the pin on the left side of the channel. In addition to the cross section surveys, photos were taken at each of the 13 cross sections, looking across the stream from left to right, to document the baseline conditions at each respective cross section. Specific stations along each permanent cross section were established during the as-built survey to promote replication and consistency during the subsequent annual cross section surveys. The stationing for each cross section was established to always begin on the left side of the channel, facing downstream, at the left rebar/PVC pin, and to continue across the stream channel to the
rebar/PVC pin on the right side. The as-built survey of the 13 cross sections established the baseline conditions with regards to stream dimension. All of the 13 cross sections will be surveyed each year during the five-year monitoring period and the resulting parameters will be compared annually. The parameters to be monitored include bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. Annually, photos will be taken at each of the 13 cross sections looking across the stream from left to right and compared to the photos from the previous years to document stream conditions at each respective cross section.

The pattern for all of the stream reaches was surveyed and baseline conditions were established as part of the as-built survey. Monitoring surveys for stream pattern are limited to the project stream reaches specified above for annual monitoring surveys. The stream pattern parameters resulting from the annual monitoring surveys include sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. These parameters will be compared annually.

The as-built survey included a longitudinal profile survey along the entire length of all restored stream reaches. Longitudinal profiles were surveyed by identifying each stream feature (riffle, run, pool, or glide) and surveying specific points at each feature. These specific locations included top of bank, bankfull, water's edge or surface, and thalweg. The as-built survey was used to establish the baseline conditions with regards to monitoring the longitudinal profile within the project reaches described above. The longitudinal profiles surveys conducted each year are then limited to the project stream reaches specified above. The parameters resulting from these longitudinal profile surveys are compared on an annual basis to those of the baseline and previous years. The parameters to be monitored include bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing.

During the as-built survey, Modified Wolman pebble counts were conducted at each of the project stream reaches to classify the stream bed materials. The pebble counts for the larger project stream reaches (R1 and R2) were conducted at each of the permanent cross sections by performing an equal number of counts at each cross section and then combining the results into a reach-wide count. A minimum of 100 counts were made for each of these larger reaches. Reach-wide pebble counts were conducted along the smaller project stream reaches (R1A, R2A, R2B, and R2D). A minimum of 50 counts were made for each of these smaller reaches. The stream bed materials are monitored at LWOC by repeating the same pebble count procedures on an annual basis. The results of the pebble counts for each specified project stream reach are compared on an annual basis.

BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information served as baseline data for stream bank stability at LWOC. Stream bank stability monitoring using these parameters is required in Monitoring Year 3 and 5. Data collected during these years will be compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both the stream bank erosion rates and sediment transport rates at LWOC are
expected as a result of restoration and will be documented as described to demonstrate success.

A total of eight crest gages, one at each reach and one at the confluence of Reaches R1 and R2, were installed across LWOC during the as-built survey. At the base of each crest gage a permanent vertical datum was installed. The locations of each crest gage along with the elevation of the permanent vertical datum were surveyed during the as-built survey. The crest gages were used for the hydrologic monitoring at LWOC to verify the occurrence of bankfull storm events. Each crest gage was set during its initial installation and baseline photos were taken. The crest gages were checked annually and the flood stage(s) recorded by each gage and measured relative to the permanent vertical datum of the respective gage. The results of these measurements were used to document the occurrence of significant storm events, with the goal of specifically documenting the occurrence of bankfull and larger stream flow events.

Photo documentation and project-wide visual assessment was used for stream monitoring at LWOC to complement the other stream monitoring practices. A total of 14 permanent reference photo points were installed across LWOC (11 during the as-built survey and 3 during the Year 1 monitoring period as described above). These photo points were monumented using steel rebar/PVC pins. Photos were taken at that time to provide photo documentation of baseline stream conditions. Photos were taken from each of the 14 permanent photo reference points with the same orientation each year and were used for photo documentation and annual comparison of the stream conditions across LWOC. This exercise helped to further validate and document stream restoration success at LWOC. The visual assessment was conducted using annual field observations and pedestrian surveys to identify any specific problem areas along the streams at LWOC during the monitoring period. Any such problem areas were identified and organized under appropriate categories. Such areas were documented using representative photos, where applicable, and their locations were mapped on the Monitoring Plan View. The suspected cause and appropriate remedial action for each problem was determined. If during any given year, the streams were not anticipated to meet the final established monitoring criteria, corrective actions were considered. Such modifications were documented and discussed with EEP.

3.2.2 Stream Monitoring Success Criteria

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored annually for the project stream reaches as described in detail above. Stream restoration success at LWOC was evaluated by comparison of the annual results against the same parameters as predicted, specified, and required in the proposed design. Success was achieved when all such comparisons reveal positive trends toward overall stream stability. Expectation was the stream monitoring results should confirm the stream channels at LWOC are of the proposed stream channel type (Rosgen 1994).

Stream dimension parameters including bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius were measured and/or calculated for each of the
permanent cross sections. The described dimension parameters were expected to remain consistent from year to year and should fall within the ranges established by the original proposed design parameters. It was expected and acceptable that minor adjustments in dimension will occur such as the development of point bars and the subsequent deepening of pools. As vegetation becomes established and the stream banks are stabilized, the anticipation was that the width depth ratios will decrease and the entrenchment ratios will increase slightly, both within the normal ranges for C and E stream channel types (Rosgen, 1994).

Stream pattern parameters including sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio were measured and/or calculated. Stream pattern measurements were expected to remain consistent from year to year and to fall within the originally proposed design parameters. As vegetation becomes established and the stream banks are stabilized, it was anticipated that the sinuosity of the streams will also adjust, likely becoming more sinuous with time.

Stream longitudinal profile parameters including bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing were measured. Longitudinal profiles parameters were expected to remain relatively consistent from year to year. The stream profiles should not show aggrading or degrading conditions during the five-year monitoring period, however, minor profile adjustments such as deepening of pools was expected.

Stream bed material was monitored using the described Modified Wolman pebble counts.
The success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely occur during the early years following construction and several years may be needed to observe a consistent bed material. Bed materials should ultimately reflect the proposed design conditions for each reach at LWOC.

Stream bank stability will be monitored using BEHI and sediment transport estimates during Monitoring Years 3 and 5. Data collected during these years will be compared with preconstruction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both stream bank erosion rates and sediment transport rates at LWOC are expected as a result of restoration and will be documented as described to demonstrate success.

Hydrologic monitoring success was based on the ability to document the occurrence of bankfull storm events at LWOC. A minimum of two bankfull events, each occurring in two separate monitoring years, are required to be documented within the five-year monitoring period. The described crest gauges were used to determine and document the occurrence of these bankfull events.

As described above, photo documentation and visual assessment was used to complement the other stream monitoring practices as part of the stream monitoring protocol at LWOC. If during any given year, the streams were not anticipated to meet the final established
monitoring criteria, corrective actions was considered. Such modifications were documented and discussed with EEP.

3.2.3 Stream Monitoring Results for Year 1 of 5

In late August 2008, the stream monitoring for Monitoring Year 1 was conducted. The methodologies described in the Section 3.2.1 were used for the stream monitoring at LWOC for Monitoring Year 1. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring. The results of these surveys were compared to the baseline data for the morphometric monitoring obtained during the as-built survey.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 1 with the initial baseline photos at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 1 and baseline conditions along with the raw data for each cross section. The comparison of the baseline and Monitoring Year 1 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments including decreasing width to depth ratios, increasing entrenchment ratios, and minor increases in depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the Year 1 Monitoring cross section photos to the as-built cross section photos strongly complemented these suggestions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included slightly increasing radii of curvature, indicative of movement toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing
the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included deepening of pools. The comparison of the baseline and Monitoring Year 1 longitudinal profiles did not show excessive aggrading or degrading. Overlays can be found in Appendix E along with the raw data from both the baseline and Monitoring Year 1 conditions.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials were expected to occur during the early years following construction. This expectation was observed in comparing the results of the baseline and Monitoring Year 1 pebble counts. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. This trend may be observed during the five-year monitoring period. At this time it is believed that the original assumption that the stream bed materials would coarsen after restoration may have been incorrect. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. The monitoring results do suggest, however that on-site sediment supply from LWOC has been reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at LWOC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the eight crest gages were checked during the Monitoring Year 1 surveys to monitor hydrology at LWOC. Six of the eight crest gages recorded flood stages in excess of the bankfull stage. The two crest gages that did not record flood stages in excess of the bankfull stage were the crest gages at Reaches R2A and R2D. The crest gage at Reach R2A apparently did not record any evidence of a flood stage event, possibly due to problems with the cork or the gage itself. The crest gage at Reach R2D recorded a flood stage that was 0.26 feet below the bankfull stage. Each of the crest gages was reset after checking stage measurements, in order to record future events. Table X lists the information related to the verification of bankfull events at LWOC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 1. This documentation of the first bankfull event at LWOC during the monitoring period suggests success with regards to hydrologic monitoring at LWOC.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 1 stream monitoring practices. Photos were taken from each of the original

11 permanent photo reference points. Three additional photo points (photo points 2.5 Y 1 , 3.5 Y 1 , and 8.5 Y 1) were also added to ensure that adequate photo documentation would be conducted within the monitoring limits of the project stream reaches. Photo point 2.5 Y 1 was added for Reach R2, photo point 3.5Y1 for Reach R2B, and photo point 8.5 Y 1 for Reach R1A. After installation, photos were taken at each of the three added photo points. Appendix C includes all of the described photos and provides comparison of the photos with the initial baseline photos taken from the 11 permanent photo reference points. The new photos taken at three additional photo points will serve as supplemental baseline condition photos and subsequent photos at these same locations will be compared in Monitoring Years 2 through 5. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. The project-wide visual assessment revealed 12 specific stream problem areas. Each of these stream problem areas, including their description, location, and suspected cause, are listed in Table XII. The stream problem areas included eight in-stream structure failures and associated stream bank erosion, three areas of floodplain and adjacent stream bank erosion, and one area of stream bank erosion. Mulkey elected to promptly address all of the stream problem areas and conducted construction repairs of each in October 2008. The eight stream problem areas categorized as failures of in-stream structures and were determined to be caused by incorrect construction of the given in-stream structure. The failed in-stream structures included j-hook rock vanes and rock cross vanes. All eight of the structures and the associated areas of stream bank erosion were repaired. Several of the j-hook rock vanes were converted to rock vanes during the repairs to prevent future point bar erosion. The three stream problem areas categorized as floodplain and adjacent stream bank erosion were determined to be attributed to the incorrect installation of floodplain interceptors. All three of the eroded areas were repaired and floodplain interceptors were installed using both rock and \log materials. The remaining stream problem area categorized as stream bank erosion was determined to be caused by a minor field adjustment made to the stream alignment in order to save an existing mature tree at the request of the landowner. This area of stream bank erosion was also repaired. The repairs to the all of the areas of eroded stream banks included re-grading, re-seeding with appropriate temporary and permanent seed, and re-installing coir fiber matting. Black willow (Salix nigra) and/or silky dogwood (Cornus amomum) live stakes were harvested onsite and were installed at the repaired stream banks. Please note that the results shown in Table XI were updated such that the repairs to the stream problem areas described above are included. Based on the results of the stream monitoring for Monitoring Year 1 at LWOC, as well as the subsequent corrective actions taken, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.4 Stream Monitoring Results for Year 2 of 5

In mid-October and the beginning of November 2009, the stream monitoring for Monitoring Year 2 was conducted. The methodologies described in the Section 3.2.1 were used for the stream monitoring at LWOC for Monitoring Year 2. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring. The results of these surveys were compared to the previous data collected during prior monitoring periods,
baseline conditions established through the as-built survey, and to the proposed design parameters calculated prior to construction.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 2 with the initial baseline photos and the previous monitoring photos taken at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 2, the previous monitoring periods, and baseline conditions along with the raw data for each cross section. The comparison of Monitoring Year 2 to the previous surveys for stream dimension data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. Throughout all the cross sections, the bankfull cross sectional area and entrenchment ratios remained consistent indicating the channels were able to contain and convey all the flows experienced during Monitoring Year 2. However, the main channels R1 and R2 displayed typical signs of adjustment in their channel geometries. Both of these reaches have recently been impacted by beavers and some of these adjustments can be attributed to this recent development. In particular on R1, cross section 11 had a significant increase in the width to depth ratio due to the backwater of a downstream beaver dam causing the pool to experience siltation. On the other end, cross section 12 experienced the reverse because a beaver dam was located directly upstream and the cascading water created scour ultimately decreasing the width to depth ratio. Similarly, cross sections along R2 exhibited localized changes in channel geometries, some attributable to beaver activity and others to natural fluctuations, but all within the acceptable ranges of the design parameters. The one exception was cross section 1 , with a width to depth ratio climbing up to 22 and the bankfull cross sectional area remaining consistent, a cursory analysis raised concern. However, the overlay of cross section 1 clearly demonstrated the channel developing opposing inner berms to better accommodate the low flow capacity. This effectively allowed the channel to deepen without creating a change in the cross sectional area causing the width to depth ratio to increase instead of decrease due to the derivation being based on the calculated value of mean depth. The results of the smaller tributaries R1A, R2A, R2B, and R2D consistently exhibited minor natural adjustments typical of stable C type streams. The comparisons of the Monitoring Year 2 overlays and cross sectional photos to the previous year's strongly substantiated these findings, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the Year 2 monitoring data to previous year's stream pattern data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches remained consistent to the design parameters with minor variations attributed to vegetation establishment, natural channel adjustments, and variance in measuring techniques. These minor variations can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. In comparing the data collected from Monitoring Year 2 to the previously collected data, the results followed the previous analysis. All reaches showed acceptable minor variations in all parameters monitored. These variations are within the design tolerances and are attributable to vegetation establishment, natural channel adjustments, and variance in measuring techniques. Overall, none of the longitudinal profiles showed excessive aggrading or degrading. Overlays of the longitudinal profiles can be found in Appendix E.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials and for comparison to the previous years' conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials were expected to occur during the early years following construction. Over time the expectation was for the stream to eventually coarsen, however, Monitoring Year 1 and Year 2 have shown the opposite to be true. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. Therefore it is believed that the original assumption that the stream bed materials would coarsen after restoration may have been incorrect. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. Nonetheless, the monitoring results do suggest on-site sediment supply from LWOC was reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at LWOC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the eight crest gages were checked during the Monitoring Year 2 surveys to monitor hydrology at LWOC. Seven of the eight crest gages recorded flood stages in excess of the bankfull stage. The one crest gage that did not record a flood stage in excess of the bankfull stage was at Reach R2D. Although, the region has seen a significant drought, the site has received large quantities of rain this monitoring year. Additionally, the R2D reach has a constant flow of water throughout its course. The crest gage at Reach R2D recorded a flood stage that was 0.10 feet below the bankfull stage this monitoring year. This information coupled with the other seven gauges having recorded a bankfull event during this monitoring year suggested that Mulkey needs to recheck the R2D crest gage in 2010 for elevation discrepancies with regard to its zero elevation. All of the crest gages were reset after checking stage measurements, in order to record future events. Table X lists the information
related to the verification of bankfull events at LWOC for Monitoring Year 2 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 2. This documented the second and final required bankfull event at LWOC and therefore demonstrated success with regards to hydrologic monitoring per Section 3.2.2.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 2 stream monitoring practices. Photos were taken from each of the 14 permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos between the baseline conditions, Monitoring Year 1 and Monitoring Year 2 photos taken from the 14 permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas (Table XI). During the project-wide visual assessment, along with the other Monitoring Year 2 field work activities, Mulkey noticed a significant increase in beaver activity at the site. Specifically, beaver dams have been constructed along Reaches R1, R2 Upper, and R2 Lower in several locations. Please note that Table XI and Table XII have been updated to reflect these observations. Mulkey is currently coordinating with the USDA Wildlife Services under BMAP to have the beavers and beaver dams removed, as well as to have the site monitored for future beaver activity. Mulkey has also observed cattle intrusion into the fenced buffers at LWOC. Mulkey is working with the landowner to prevent future cattle trespass from occurring. Other field observations made during the Monitoring Year 2 include the observation of the apparent restoration of wetland hydrology adjacent to Reach R1A. The restoration of Reach R1A appears to have reconnected the stream to its historic floodplain, as well as raise the groundwater table in the buffer areas adjacent to the reach. These observations are evidenced by the increase of wetland vegetation species and the saturation of the soils in the buffer areas adjacent to Reach R1A. The waste treatment outfall located on R1 reach and emanating from the nearby school appears to be functioning extremely well. Vegetation around the outfall is growing rapidly and helping to create a highly stable secondary treatment area.

Based on the results of the stream monitoring for Monitoring Year 2 at LWOC, as well as the subsequent corrective actions being taken, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

NCEEP expressed concerns regarding the fencing of the conservation easement at LWOC to Mulkey in a letter dated May 26, 2009. Mulkey responded to NCEEP in a June 1, 2009 letter, urging NCEEP to consider several key exceptions for this particular case. These exceptions are explained in the referenced June 1, 2009 letter. Mulkey awaits response from NCEEP regarding the July 2009 letter before further addressing the concerns raised by NCEEP.

3.2.5 Stream Monitoring Results for Year 3 of 5

In early November 2010, the stream monitoring for Monitoring Year 3 was conducted using the methodologies described above. Despite the site suffering a flood event from the
remnants of a tropical storm, the overall stability of the six stream reaches has improved. The stream dimension, pattern, and profile remained consistent with the previous years' data and continue to remain within the tolerances of the design parameters which are explained in detail below. However the visual assessment did reveal areas of scour along the banks, benches, and terraces confined mostly to reach R1. Mulkey intends to repair these areas in early 2011 to ensure ample time for the project to recover. Nonetheless, per the monitoring guidance, the overall stability of LWOC is within acceptable tolerances.

LWOC experienced several storm events over the Year 3 monitoring period, the most extensive occurring from the remnants of a tropical storm occurring in late September of 2010. This event created storm flows well in excess of the bankfull stage evidenced by wrack lines along the terrace slopes. These lines were often above the measurable extent of the crest gages. In fact, the flows destroyed four of the eight crest gages across the site. The four destroyed crest gages existed on reaches which have achieved the two bankfull events in two separate years' hydrological monitoring success criteria. Overall, five of the six reaches on LWOC have achieved the hydrological success criteria for monitoring; therefore Mulkey intends to only continue monitoring R2D.

The visual assessment of LWOC supported the crest gage data with several areas of scour occurring along reach R1, vegetative matts being forced down, wrack lines along the terrace slopes, silt dispersed on the vegetation on the bench, deposition of sand/silt on the benches, and minor washing out of the fence. Most of this evidence can be viewed through the photo logs of the vegetation plots (Appendix B), photo points (Appendix C), and cross sections (Appendix D); however photos of the scour along R1 can be found in Appendix F as no existing photo points could capture the areas of concern. The scour occurred because back eddies were formed from the terrace slopes following the creek. In these areas the back eddies essentially drilled a hole in the bench and deposited the materials downstream. Areas of bank scour were located in the vicinity of these scour holes as heavy flows began reentering the channel. There are also areas of scour around the structure tie-ins with the bench where unforeseen eddies began to develop downstream of structure arms. Due to the location of this disturbance occurring up on the bench or terraces, the monitoring does not reflect any instability from these areas of concern. Nonetheless, Mulkey perceived these areas of concern as detracting from the overall positive trends developing across LWOC and therefore intends to repair these areas in early 2011. The repairs will consist of a combination of grading and vegetative activities to minimize the effects of future excessive flows.

Contrary to the visual assessment, the comparison of the 13 cross sections to previous monitoring data indicated stability across the site (Appendix E). The cross sections along R2 (1-5) not only show signs of a stable channel, but they depict the expected tightening of the channel due to vegetation taking hold with aggradation along the banks occurring in all but 1 cross section. The cross section on R2A (6) also depicts this phenomenon while the cross sections for R1A (13), R2B (7) and R2D (8) show no significant change in shape or form. The cross sections along R1 (9-12) show slight variation in shape and form that is indicative of a recent excessive storm event. However, upon comparison of all cross sections with past monitoring data and design tolerances, every measured variable is either
varying within the design tolerance or migrating back towards an acceptable value. Therefore in terms of channel dimension, LWOC has been determined to be stable and meeting all monitoring success criteria.

Similarly, the stream pattern for all reaches across LWOC portrayed a stable stream network. The meander length, belt width, and radius of curvature measurements for each reach remained within the design tolerances and showed no significant deviations from the previously collected monitoring data.

The longitudinal profiles, found in Appendix E, depicted slight variations in each stream reach. Reaches R1 and R2B were consistent with previously collected data while R2 and R2A displayed degradation and R1A and R2D aggradation. These differences can be attributed to the dynamic nature of the stream system coupled with the system experiencing an intense storm event. Typically, the bed materials would correlate and support stream bed fluctuation with aggrading streams displaying an influx of finer materials and vice versa for degrading streams. This correlation is displayed in R1A and R2D where the finer sediments upstream are being slowed by the vegetation and aggrading the channel. Similarly, R2 is displaying the correlation in reverse with the bed material coarsening while the bed degrades exposing the larger substrate materials. R1 has a consistent longitudinal profile and is beginning to coarsen indicating the reach still moving towards an equilibrium between stream power and sediment transport. R2A with degradation in the longitudinal profile and fining of the bed materials is still trying to accommodate the sediment supply exposed upstream during the construction process. R2B displayed consistent bed slope and bed form thus indicating a balance reached between stream power and sediment transport. Therefore all of the reaches except R2B are still showing the expected signs of stream fluctuation indicative of a system trying to establish equilibrium. None of the described trends are representative of trends toward instability, rather they depict the natural development of a young stream network striking a balance between stream power and sediment transport.

As detailed by the monitoring guidance, data was collected and analyzed for the Bank Erosion Hazard Index (BEHI) and Near Bank Shear Stress (NBS) in an effort to quantify the sediment transport rate in tons/year for each reach in LWOC (See Table IX). The results of this process indicated a significant decrease across LWOC. Pre-construction data determined the sediment transport rate to be 1853 tons/year. Data collected in Monitoring Year 3 revealed a sediment transport rate of 342 tons/year or an 82% reduction in sediment in the system. Reach R1, the reach most affected by the storm event, showed a reduction in sediment transport from 455 tons/year to 189 tons/year or a 58% reduction. These individual reach trends and cumulative system wide trends show extremely positive results and are indicative of stream stability across the entire stream network at LWOC.

In the Spring of 2010, Mulkey relocated portions of the fence surrounding the easement around LWOC. This was performed at the request of NCEEP to ensure the entire easement was protected from cattle and to include the required 50 foot buffer established by the United States Army Corps of Engineers. The new fence locations have been incorporated and accurately depicted on the plan sheets found in Appendix B.

In conclusion, Mulkey has determined that all monitoring aspects have met the monitoring success criteria established for LWOC. Mulkey does intend to perform some minor corrections to LWOC in early 2011 so as not to detract from the overall success of the project. These corrections are minor in scope and do not affect the overall stability of LWOC. Given the overall success and the prior fence relocation, Mulkey does not recommend any action except to proceed with the annual stream monitoring.

3.2.6 Stream Monitoring Results for Year 4 of 5

During the early months of 2011, repairs were conducted on the floodplain benches and terraces of R1 and R2. These repairs involved reshaping portions of the benches and terraces, installation of live brush mattresses, temporary and permanent reseeding and the installation of erosion control matting. Following these improvements, bare root plants and live stake material were installed in areas impacted by the repair work.

During November 2011, the stream monitoring for Monitoring Year 4 was conducted using the methodologies described above. During initial site investigations, Mulkey noticed that beaver activity had returned to the R1 and R2 reaches. Since Mulkey is currently contracted with the USDA Animal and Plant Health Inspection Service (APHIS) Wildlife Services, it immediately notified them of the activity. Stream surveys of the R1, R2, and R2A reaches was challenging due to the increased water levels. These fluctuations are noticeable throughout the current years' data for these reaches. Immediately following our stream surveys, personnel from APHIS trapped beavers and removed their dams. Mulkey will continue to monitor the site for beaver activity and notify APHIS personnel as necessary.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 4 with all of the previous monitoring years at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 4, the previous monitoring periods, and baseline conditions along with the raw data for each cross section. The comparison of Monitoring Year 4 to the previous surveys for stream dimension data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. Throughout all the cross sections, the bankfull cross sectional area and entrenchment ratios remained consistent indicating the channels were able to contain and convey all the flows experienced during Monitoring Year 4. However, the main channels R1 and R2 displayed typical signs of adjustment in their channel geometries. Both of these reaches have recently been impacted by beavers and some of these adjustments can be attributed to this recent development. Cross section 12 located on the R1 reach is continuing to recover from scour associated with beaver dams in Year 2. The bankfull maximum depth for Cross Section 12 is continuing to decrease and move closer to the design parameters. Similarly, cross sections along R2 exhibited localized changes in channel geometries, some attributable to beaver activity and others to natural fluctuations, but all within the acceptable ranges of the design parameters. The only exception was Cross Section 1 which has a width to depth ratio of 20.4. After review of the previous years' cross
sections, the bankfull width has remained constant but the bankfull maximum depth has fluctuated. The increased bankfull maximum depth is likely related to beaver activity and associated scour from cascading water. Since the site is under management for beaver activity by APHIS, the situation is currently being addressed. The results of the smaller tributaries R1A, R2A, R2B, and R2D consistently exhibited minor natural adjustments typical of stable C type streams. The comparisons of the Monitoring Year 4 overlays and cross sectional photos to the previous year's strongly substantiated these findings. No other concerns, problems, or negative trends were documented except the issues discussed above.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the Year 4 monitoring data to previous years showed very little variation in the data, indicating stability. The results showed that all of the reaches remained consistent to the design parameters with minor variations attributed to vegetation establishment, natural channel adjustments, and variance in measuring techniques. These minor variations can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The longitudinal profiles, found in Appendix E, depicted slight variations in each stream reach. Some of these variations are the result of the beaver activity which was present during the November 2011 stream surveys. The beaver activity caused higher water and thalweg elevations between the areas with beaver dams. Beaver activity was confined to R1 and R2 but other reaches were impacted by the backed up water, particularly R2A. Each of these beaver activity areas are detailed in Table XII. In comparing the data collected from Monitoring Year 4 to the previously collected data, the results showed that reaches only experienced minor variations in all parameters monitored. These variations are within the design tolerances and are attributable to vegetation establishment, natural channel adjustments, and variance in measuring techniques. Overall, none of the longitudinal profiles showed excessive aggrading or degrading. Overlays of the longitudinal profiles can be found in Appendix E.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials and for comparison to the previous years' conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials have stabilized and remained consistent on nearly all reaches. Reach R2A coarsened over the last year, which was expected according to the design parameters. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur on all reaches as expected. Nonetheless, the monitoring results do suggest on-site sediment supply from LWOC was reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel
material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Data for the Bank Erosion Hazard Index (BEHI) and Near Bank Shear Stress (NBS) was not collected in Year 4 per the monitoring guidance. Data is scheduled to be collected again in Year 5. Data previously collected can be seen in Table IX.

Previously, five of the six reaches on LWOC had achieved the hydrological success criteria for monitoring; therefore Mulkey only monitored R2D in Year 4. Table X lists the information related to the verification of bankfull events at LWOC for Monitoring Year 4 while the raw data can be found in Appendix E. At the end of the Year 4 monitoring period, all reaches had achieved at least 2 bankfull events which demonstrates success with regards to hydrologic monitoring per Section 3.2.2.

A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas (Table XI). Photos were taken from each of the 14 permanent photo reference points. Appendix C includes all of these photos and provides comparison of the photos between the baseline conditions and all subsequent years of monitoring. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas (Table XI). During the project-wide visual assessment, along with the other Monitoring Year 4 field work activities, Mulkey noticed a significant increase in beaver activity at the site. Specifically, beaver dams have been constructed along Reaches R1 and R2 Upper (above R1/R2 confluence). Please note that Table XI and Table XII have been updated to reflect these observations. As mentioned previously, Mulkey is currently contracting with APHIS Wildlife Services to monitor and to control the beavers at the site. Following stream surveys in November 2011, beavers were trapped and dams removed by the APHIS personnel.

Other field observations made during the Monitoring Year 4 include numerous whitetail deer bedded within the easement. This is primarily due to the suitable habitat created by the increased vegetation within the easement compared with the surrounding fields and woods. Additionally, during field investigations in March 2011, large quantities of macroinvertebrates were noted in the R2 reach. These macro-invertebrates primarily included caddisflies, stoneflies, and hellgrammites.

In conclusion, Mulkey has determined that all monitoring aspects have met the monitoring success criteria established for LWOC. The stream dimension, pattern, and profile have remained consistent across previous monitoring years. The majority of the data has remained within the design tolerances, which has resulted in stable C type stream channels throughout the past 4 years of monitoring. Based on the current stream monitoring results at LWOC, as well as the recent corrective actions taken, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

4.0 Project Monitoring Methodology

Success criteria for stream mitigation sites are based on guidelines established by the USACE, US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and the NCDWQ (USACE et. al, 2003). These guidelines establish criteria for monitoring both hydrologic conditions and vegetation survival. These same guidelines were used to develop the monitoring methods, frequencies, and success criteria discussed herein for LWOC and further described in detail in the approved mitigation report (Mulkey Engineers and Consultants, 2008). LWOC site conditions will be monitored annually during the latter part of the growing season months (August, September, and October) over the five-year monitoring period. This monitoring period complies with the requirements set forth in the Full Delivery RFP 16-D06027. Monitoring results will be documented on an annual basis, with the associated reports submitted to the NCEEP as evidence that the established project goals and objectives are being achieved. The results of annual monitoring will be used to evaluate the degree of success LWOC has achieved in meeting the said goals and objectives. In the event that goals are not being met, Mulkey will coordinate with the NCEEP to develop a plan for ameliorating the areas of concern.

5.0 References

Mulkey Engineers and Consultants. 2008. Little White Oak Creek Stream Restoration Mitigation Report. August 2008.

NCEEP. 2005. Content, Format, and Data Requirements for EEP Monitoring Reports. Version 1.1, September 16, 2005. NCDENR, NCEEP. 17 pp.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena, 22:169-199.
Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. 1998. The Reference Reach - A Blueprint for Natural Channel Design. From Proceedings of the Wetlands and Restoration Conference, March 1998, Denver CO. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health and Natural Resources.

USACE, USEPA, NCWRC, and NCDWQ. 2003. Stream Mitigation Guidelines. April 2003.

Figures

TABLES

Table I. Project Restoration Approach and Mitigation Type Little White Oak Creek Stream Restoration / D06027-B					
Stream Reach ID	Restoration Approach	Mitigation Type	Linear Footage	Stationing	Comments
R1	P2	R	7,543	0+00-75+43	Channel relocation with floodplain excavation
R1A	P1/P2	R	1,040	$0+00-10+40$	Includes 850 feet of P1 and 190 feet of P2 channel relocation
R2 (Upper and Lower)	P2	R	7,107	0+00-71+07	Channel relocation with floodplain excavation
R2A	P2	R	336	$0+00-3+36$	Channel relocation with floodplain excavation
R2B	P1/P2	R	1,474	0+00-14+74	Includes 250 feet of P1 and 1224 feet of P2 channel relocation
R2D	P1/P2	R	790	0+00-7+90	Includes 100 feet of P1 and 690 feet of P2 channel relocation
$\mathrm{R}=$ Restoration $\quad \mathrm{P} 1=$ Priority I					
EI $=$ Enhancement I		P2 = Priority II			
EII $=$ Enhancement II		P3 = Priority III			
$\mathrm{S}=$ Stabilization		SS $=$ Stream Banks Stabilization			

Table II. Project Activity and Reporting History Little White Oak Creek Stream Restoration / D06027-B			
Activity or Report	Scheduled Completion	Data Collection Completion	Actual Completion or Delivery
Restoration Plan Prepared	Oct-06	Aug-06	12-Feb-07
Restoration Plan Approved	Nov-06	N/A	30-Mar-07
Final Design - 90\%	Dec-06	N/A	16-May-07
Construction	Jun-07	N/A	13-Nov-07
Temporary S\&E mix applied to entire project area	Jun-07	N/A	13-Nov-07
Permanent seed mix applied to entire project area	Jun-07	N/A	13-Nov-07
Planting live stakes	Dec-07	N/A	11-Jan-08
Planting bare roots	Dec-07	N/A	11-Jan-08
End of Construction	Dec-07	N/A	11-Jan-08
Survey of As-built conditions (Year 0 Monitoring - Baseline)	Jan-08	Jan-08	9-Jan-08
Monitoring			
Year 1-2008	Dec-08	Sep-08	Dec-08
Year 2 - 2009	Dec-09	Oct-09	Dec-09
Year 3-2010	Dec-10	Nov-10	Dec-10
Year 4-2011	Dec-11	Oct - Nov 11	Jan-12
Year 5 - 2012	Dec-12	N/A	N/A

Bolded items represent those events or deliverables that are variable. Non-bolded items represent events that are standard components over the course of a typical project.

Table III. Project Contacts Little White Oak Creek Stream Restoration / D06027-B	
Designer Mulkey Engineers and Consultants	6750 Tryon Road Cary, NC 27518 Contact: Emmett Perdue, PE Tel. 919.858.1874
Construction Contractor Vaughan Contracting, LLC	P.O. Box 796 Wadesboro, NC 28170 Contact: Tommy Vaughan Tel. 704.694.6450
Planting Coordinator Bruton Nurseries and Landscapes	150 Black Creek Road Fremont, NC 27830 Contact: Charles Bruton, Jr. Tel. 919.242.6555
Seeding Contractor Vaughan Contracting, LLC	P.O. Box 796 Wadesboro, NC 28170 Contact: Tommy Vaughan Tel. 704.694.6450
Seed Mix Sources Evergreen Seed	P.O. Box 669 Willow Spring, NC 27592 Contact: Wister Heald Tel. 919.567.1333
Nursery Stock Suppliers International Paper South Carolina SuperTree Nursery North Carolina Forestry Service Claridge Nursery	5594 Highway 38 South Blenheim, SC 29516 Contact: Geoffrey Hill Tel. 803.528.3203 762 Claridge Nursery Road Goldsboro, NC 27530 Contact: James West Tel. 919.731.7988
Monitoring Performers Mulkey Engineers and Consultants	6750 Tryon Road Cary, NC 27518 Contact: Emmett Perdue Tel. 919.858.1874

Table IV. Project Background Little White Oak Creek Stream Restoration / D06027-B	
Project County	Polk County, North Carolina
Drainage Area [sq. mi(acres)]	
R1	4.46 (2854)
R1A	0.11 (70)
R2	10.85 (6944)
R2A	0.54 (355)
R2B	0.12 (77)
R2D	0.05 (32)
Drainage Impervious cover estimate (\%)	
R1	2
R1A	2
R2	2
R2A	2
R2B	2
R2D	2
Stream Order	
R1	3
R1A	1
R2	3,4
R2A	2
R2B	1
R2D	1
Physiographic Region	Piedmont
Ecoregion	Southern Inner Piedmont
Rosgen Classification (As-built)	
R1, R1A, R2	C5
R2A, R2B	C4
R2D	C6
Cowardin Classification	R3UB2*
Dominat Soil Types	Riverview-Chewacla-Buncombe
Reference Site ID	UT to Ostin Creek
USGS HUC for Project and Reference	
Project	03050105
Reference	03050105
NCDWQ Sub-basin for Project and Reference	
Project	03-08-02 (Broad)
Reference	03-08-03 (Borad)
NCDWQ Classification for Project and Reference	
Project	C
Reference	C, Tr
Any portion of any project segement 303d?	No
Any portion of any project segement upstream of a 303d listed segment?	No
Reasons for 303d listing or stressor	N/A
Percent of project easement fenced	100

(R) Riverine (3) Upper Perennial (UB) Unconsolidated Bottom (2) Sand

Table V. Stem Counts Monitoring Year 4 for Each Species Arranged by PlotLittle White Oak Creek Stream Restoration / D06027-B																															
	Plots																								$\left\lvert\, \begin{gathered} \text { Year 0 } \\ \text { Totals } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { Year } 0 \text { Totals } \\ & \text { (Adjusted) }^{\mathrm{A}} \end{aligned}\right.$	Year 1 Totals	Year 2 Totals	Year 3 Totals	Year 4 Totals	$\begin{array}{\|c} \hline \text { Survival } \\ \% \end{array}$
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24							
Shrubs																															
Cephalanthus occidentalis																1			1						9	9	8	7	4	2	22\%
Cornus amomum							4	2		1		1		3											15	18	18	18	12	11	61\%
Sambucus canadensis																									2	2	2	0	0	0	0\%
Trees																															
Betula nigra	1	8				2	5	5		1				2				2		2			6		41	40	37	35	33	34	85\%
Cornus florida															1						1				2	2	2	2	2	2	100\%
Corylus americana														1											17	5	4	3	1	1	20\%
Diospyros virginiana											3	1					2							8	19	19	16	17	14	14	74\%
Fraxinus pennsylvanica								3		2			7	1				4	2			6	1		37	35	35	31	24	26	74\%
Juglans nigra			2								1										1			2	7	7	6	6	6	6	86\%
Pinus echinata			2	1	1				1			1			1		2								28	26	15	11	8	9	35\%
Pinus strobus									2		1				4									2	20	21	18	11	8	9	43\%
Pinus virginiana					2				3						1										12	13	9	8	7	6	46\%
Prunus serotina			1		2						1	1			1						1				6	7	7	7	7	7	100\%
Plantanus occidentalis							2	2		5		7				4		2	5	16			1		45	45	45	45	44	44	98\%
Quercus alba			5	7	3				3		1	1		1	1		9		1		1			7	35	43	39	41	38	40	93\%
Quercus falcata									2	1	5				6		1				7				41	36	30	28	24	22	61\%
Quercus michauxii	7	2								1			4	2		3		1		4		4	3		47	46	45	40	30	31	67\%
Quercus nigra	8				1	8																			34	23	21	21	17	17	74\%
Quercus phellos	2	2			1	5																			9	19	19	19	10	10	53\%
Salix nigra																									1	1	1	1	0	0	0\%
Ulmus americana								3		4				1		4		3	9			8	2		26	43	42	41	38	34	79\%
Totals	18	12	10	8	10	15	11	15	11	15	12	12	11	11	15	12	14	12	18	22	11	18	13	19	453	460	419	392	327	325	71\%
										Stems	Acre														Min	Ave	Max				
Year 0	996	823	735	653	741	950	748	763	683	694	656	705	795	615	850	868	757	518	854	1000	645	924	776	939	518	779	1000				
Year 1	996	823	571	571	576	826	709	763	562	694	615	581	795	615	729	826	598	438	813	1000	484	924	776	816	438	713	1000				
Year 2	996	823	490	367	535	744	669	643	522	694	615	581	711	615	729	702	558	438	772	1000	444	843	776	776	367	668	1000				
Year 3	747	563	408	327	453	620	433	602	442	612	492	539	460	451	607	537	518	438	732	917	444	723	612	694	327	557	917				
Year 4	747	519	408	327	412	620	433	602	442	612	492	498	460	451	607	496	558	478	732	917	444	723	531	776	327	553	917				
Plot Acreage	0.024	0.023	0.025	0.025	0.024	0.024	0.025	0.025	0.025	0.025	0.024	0.024	0.024	0.024	0.025	0.024	0.025	0.025	0.025	0.024	0.025	0.025	0.025	0.025							

Table VI. Vegetative Problem Areas Little White Oak Creek Stream Restoration / D06027-B			
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
No vegetative problem areas observed (Year 1, 2008)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 2, 2009)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 3, 2010)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 4, 2011)	All project reaches	N/A	N/A

Table VII. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R1 (7543 ft)																		
PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension - Riffle	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft)	--	--	--	15	43	25	16.6	20.3	18.4	16.0	20.6	18.5	--	--	25.7	22.9	24.1	23.5
Floodprone Width (ft)	--	--	--	--	--	--	69.6	118.6	94.1	67.2	72.8	67.2	90.8	113.6	98.4	73.5	79.5	76.5
BKF Cross Sectional Area (sq. ft.)	--	--	--	30	110	60	52.9	69.7	61.3	27.4	33.4	30.3	--	--	52.0	39.5	49.1	44.3
BKF Mean Depth (ft)	--	--	--	1.5	3.8	2.5	3.20	3.43	3.32	1.57	1.72	1.64	--	--	2.02	1.6	2.1	1.89
BKF Max Depth (ft)	--	--	--	--	--	--	2.37	5.00	3.69	1.54	2.36	1.90	1.90	2.91	2.34	2.8	3.0	2.89
Width/Depth Ratio	--	--	--	--	--	--	5.2	5.9	5.6	9.3	12.7	11.3	--	--	12.7	10.7	14.7	12.7
Entrenchment Ratio	--	--	--	--	--	--	4.2	5.8	5.0	3.5	4.4	3.8	3.5	4.4	3.8	3.2	3.3	3.3
Wetted Perimeter (ft)	--	--	--	--	--	--	--	--	25.4	--	--	20.8	--	--	29.7	24.3	25.2	24.7
Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	2.8	--	--	1.4	--	--	1.8	1.57	2.03	1.8
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	22.0	61.6	39.8	36.0	150.0	67.0	77.1	208.1	92.9	40.6	135.8	87.7
	--	--	--	--	--	--	23.4	63.8	37.7	19.0	115.0	49.0	38.5	159.5	68.0	35.5	108.4	58.1
	--	--	--	--	--	--	107.0	189.3	135.7	33.0	155.0	94.0	45.8	215.0	130.4	178.0	258.9	210.9
	--	--	--	--	--	--	1.2	3.3	2.2	1.9	8.1	3.6	1.9	8.1	3.6	1.7	5.8	3.7
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	14.3	43.1	27.5
	--	--	--	--	--	--	0.001	0.117	0.010	0.006	0.066	0.028	0.002	0.021	0.009	0.003	0.027	0.010
	--	--	--	--	--	--	11.4	87.9	39.3	18.3	62.9	35.1	25.4	87.2	48.7	22.4	53.7	40.7
	--	--	--	--	--	--	50.6	402.6	140.9	50.3	105.8	78.9	69.8	146.8	109.4	113.3	323.8	193.5
Substrate (Classification)																		
$\begin{array}{r} \mathrm{d} 50(\mathrm{~mm}) \\ \mathrm{d} 84(\mathrm{~mm}) \end{array}$	--			--			0.22			3.00			0.22			0.5		
	--			--			12.2			105.54			12.2			4.4		
Additional Reach Parameters																		
Bankfull Slope (ft/ft)	--			--			0.0028			0.0090			0.0028			0.0025		
Channel Length(ft)	--			--			6530			590			7643			7543		
Valley Length (ft)	--			--			5717			404			5717			5717		
Sinuosity	--			--			1.14			1.46			1.34			1.32		
	--			--			Degraded E5			C4/1			C5			C5		

Table VIII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B

Reach R1A ($\mathbf{1 0 4 0} \mathrm{ft}$)

PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft)	--	--	--	6	21	12	4.5	10.9	7.7	16.0	20.6	18.5	--	--	8.0	--	--	7.8
Floodprone Width (ft)	--	--	--	--	--	--	8.6	19.1	13.8	67.2	72.8	67.2	28.2	35.2	30.5	--	--	125.0
BKF Cross Sectional Area (sq. ft.)	--	--	--	9	37	19	1.6	5.9	3.7	27.4	33.4	30.3	--	--	5.0	--	--	3.5
BKF Mean Depth (ft)	--	--	--	0.9	2.1	1.6	0.36	0.54	0.45	1.57	1.72	1.64	--	--	0.63	--	--	0.45
BKF Max Depth (ft)	--	--	--	--	--	--	0.54	1.18	0.86	1.54	2.36	1.90	0.59	0.90	0.73	--	--	0.79
Width/Depth Ratio	--	--	--	--	--	--	12.5	20.2	16.4	9.3	12.7	11.3	--	--	12.7	--	--	17.2
Entrenchment Ratio	--	--	--	--	--	--	1.7	1.9	1.8	3.5	4.4	3.8	3.5	4.4	3.8	--	--	16.1
Wetted Perimeter (ft)	--	--	--	--	--	--	--	--	4.7	--	--	20.8	--	--	9.3	--	--	8.1
Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	0.3	--	--	1.4	--	--	0.5	--	--	0.4
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft)	--	--	--	--	--	--	--	--	--	36.0	150.0	67.0	23.8	64.5	28.8	16.4	39.7	24.4
Radius of Curvature (ft)	--	--	--	--	--	--	--	--	--	19.0	115.0	49.0	12.0	49.5	21.1	10.0	21.0	14.7
Meander Wavelength (ft)	--	--	--	--	--	--	--	--	--	33.0	155.0	94.0	14.2	66.7	40.4	61.5	85.7	68.8
Meander Width Ratio	--	--	--	--	--	--	--	--	--	1.9	8.1	3.6	1.9	8.1	3.6	2.1	5.1	3.1
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	8.0	26.0	14.5
Riffle Slope (ft/ft)	--	--	--	--	--	--	--	--	--	0.006	0.066	0.028	0.007	0.070	0.030	0.004	0.046	0.019
Pool Length (ft)	--	--	--	--	--	--	--	--	--	18.3	62.9	35.1	7.9	27.1	15.1	7.5	30.7	18.5
Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	50.3	105.8	78.9	21.6	45.5	33.9	15.0	52.3	32.0
Substrate (Classification)																		
d50 (mm)		--			--			0.04			3			0.04			0.28	
d84 (mm)		--			--			8.09			105			8.09			1	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		--			--			0.0122			0.0090			0.0096			0.0115	
Channel Length(ft)		--			--			906			590			1225			1040	
Valley Length (ft)		--			--			854			404			854			854	
Sinuosity		--			--			1.06			1.46			1.43			1.22	
Rosgen Classification		--			--			graded B			C4/1			C5			C5	

Table VIII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B

Reach R2 (7107 ft)

PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft)	--	--	--	18	50	29	24.3	24.5	24.4	16.0	20.6	18.5	--	--	31.1	26.7	33.1	30.2
Floodprone Width (ft)	--	--	--	--	--	--	77.1	251.0	164.0	67.2	72.8	67.2	109.8	137.4	119.0	92.0	120.0	108.1
BKF Cross Sectional Area (sq. ft.)	--	--	--	40	150	85	76.1	76.7	76.4	27.4	33.4	30.3	--	--	76.0	61.9	73.5	66.0
BKF Mean Depth (ft)	--	--	--	1.8	4	2.9	3.13	3.14	3.14	1.57	1.72	1.64	--	--	2.45	1.89	2.38	2.20
BKF Max Depth (ft)	--	--	--	--	--	--	3.61	4.94	4.10	1.54	2.36	1.90	2.30	3.52	2.83	2.95	4.40	3.68
Width/Depth Ratio	--	--	--	--	--	--	7.7	7.8	7.8	9.3	12.7	11.3	--	--	12.7	11.5	17.5	14.0
Entrenchment Ratio	--	--	--	--	--	--	3.1	10.3	6.7	3.5	4.4	3.8	3.5	4.4	3.8	2.8	4.5	3.6
Wetted Perimeter (ft)	--	--	--	--	--	--	--	--	28.0	--	--	20.8	--	--	35.9	28.0	34.0	31.5
Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	2.7	--	--	1.4	--	--	2.1	1.8	2.3	2.1
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	15.2	48.7	32.8	36.0	150.0	67.0	60.4	251.6	112.4	40.6	169.2	105.1
	--	--	--	--	--	--	19.7	124.4	45.8	19.0	115.0	49.0	31.9	192.9	82.2	38.1	155.1	61.8
	--	--	--	--	--	--	85.8	165.1	118.2	33.0	155.0	94.0	55.4	260.0	157.7	179.3	296.1	248.4
	--	--	--	--	--	--	3.5	6.8	4.9	1.9	8.1	3.6	1.9	8.1	3.6	1.3	5.6	3.5
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	23.6	66.1	44.2
	--	--	--	--	--	--	0.001	0.008	0.003	0.006	0.066	0.028	0.001	0.014	0.006	0.001	0.002	0.001
	--	--	--	--	--	--	8.5	137.1	42.0	18.3	62.9	35.1	30.8	105.5	58.9	18.9	84.9	52.3
	--	--	--	--	--	--	38.7	442.4	205.7	50.3	105.8	78.9	84.4	177.5	132.3	132.2	264.4	183.0
Substrate (Classification)																		
$\begin{aligned} & \mathrm{d} 50(\mathrm{~mm}) \\ & \text { d84 (mm) } \end{aligned}$	--			--			0.82			3			0.82			0.6		
	--			--			5.44			105			5.44			4.7		
Additional Reach Parameters																		
Bankfull Slope (ft/ft)	--			--			0.0021			0.0090			0.0019			0.0017		
Channel Length(ft)	--			--			5978			590			7337			7107		
Valley Length (ft)	--			--			5255			404			5255			5255		
Sinuosity	--			--			1.14			1.46			1.40			1.35		
Rosgen Classification	--			--			Degraded E5			C4/1			C5			C5		

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B

Reach R2A ($\mathbf{3 3 6} \mathrm{ft}$)

PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft)	--	--	--	5.5	20	11	11.2	11.2	11.2	16.0	20.6	18.5	--	--	11.7	--	--	13.9
Floodprone Width (ft)	--	--	--	--	--	--	16.0	19.1	17.5	67.2	72.8	67.2	42.4	51.9	44.9	--	--	40.5
BKF Cross Sectional Area (sq. ft.)	--	--	--	6.5	28	16	10.8	16.8	13.8	27.4	33.4	30.3	--	--	11.0	--	--	15.8
BKF Mean Depth (ft)	--	--	--	0.65	1.9	1.3	0.97	1.50	1.24	1.57	1.72	1.64	--	--	0.94	--	--	1.14
BKF Max Depth (ft)	--	--	--	--	--	--	0.95	2.23	1.48	1.54	2.36	1.90	0.88	1.35	1.09	--	--	1.80
Width/Depth Ratio	--	--	--	--	--	--	7.5	11.5	9.5	9.3	12.7	11.3	--	--	12.5	--	--	12.2
Entrenchment Ratio	--	--	--	--	--	--	1.4	1.7	1.6	3.5	4.4	3.8	3.5	4.4	3.7	--	--	2.9
Wetted Perimeter (ft)	--	--	--	--	--	--	--	--	13.2	--	--	20.8	--	--	13.6	--	--	14.7
Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	1.3	--	--	1.4	--	--	0.8	--	--	1.1
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	20.2	20.2	20.2	36.0	150.0	67.0	22.8	95.0	42.4	32.2	49.3	40.0
	--	--	--	--	--	--	8.8	31.4	21.1	19.0	115.0	49.0	12.0	72.8	31.0	17.6	27.2	22.9
	--	--	--	--	--	--	76.7	76.7	76.7	33.0	155.0	94.0	20.9	98.1	59.5	99.4	107.1	102.9
	--	--	--	--	--	--	1.8	1.8	1.8	1.9	8.1	3.6	1.9	8.1	3.6	2.3	3.6	2.9
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5.8	46.8	23.1
	--	--	--	--	--	--	0.004	0.024	0.011	0.006	0.066	0.028	0.006	0.066	0.029	0.011	0.131	0.046
	--	--	--	--	--	--	17.2	65.4	31.8	18.3	62.9	35.1	11.6	39.8	22.2	16.6	42.1	29.5
	--	--	--	--	--	--	83.1	165.7	113.2	50.3	105.8	78.9	31.8	67.0	49.9	61.7	72.9	65.7
Substrate (Classification)																		
$\begin{aligned} & \mathrm{d} 50(\mathrm{~mm}) \\ & \text { d84 (mm) } \end{aligned}$	--			--			5.93			3			5.93			0.5		
	--			--			24.88			105			24.88			27.5		
Additional Reach Parameters																		
Bankfull Slope (ft/ft)	--			--			0.0107			0.0090			0.0091			0.0150		
Channel Length(ft)	--			--			377			590			379			336		
Valley Length (ft)	--			--			319			404			246			246		
Sinuosity	--			--			1.18			1.46			1.54			1.36		
Rosgen Classification	--			--			Degraded E4			C4/1			C4			C5		

Table VII. cont. Baseline Morphology and Hydraulic Summary
Little White Oak Creek Stream Restoration / D06027-B
Reach R2B (1474 ft)

PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft)	--	--	--	3	11	6	4.5	6.4	5.5	16.0	20.6	18.5	--	--	8.0	8.8	8.9	8.8
Floodprone Width (ft)	--	--	--	--	--	--	5.4	195.3	100.4	67.2	72.8	67.2	28.2	35.2	30.5	26.0	75.0	49.1
BKF Cross Sectional Area (sq. ft.)	--	--	--	2	9	4.5	5.9	8.7	7.3	27.4	33.4	30.3	--	--	5.0	4.9	8.7	6.3
BKF Mean Depth (ft)	--	--	--	0.45	1.2	0.8	1.31	1.35	1.33	1.57	1.72	1.64	--	--	0.63	0.56	0.98	0.72
BKF Max Depth (ft)	--	--	--	--	--	--	1.70	1.80	1.75	1.54	2.36	1.90	0.59	0.90	0.73	0.93	1.48	1.13
Width/Depth Ratio	--	--	--	--	--	--	3.4	4.8	4.1	9.3	12.7	11.3	--	--	12.7	9.0	15.7	13.0
Entrenchment Ratio	--	--	--	--	--	--	1.2	30.3	15.8	3.5	4.4	3.8	3.5	4.4	3.8	3.0	8.5	5.6
Wetted Perimeter (ft)	--	--	--	--	--	--	--	--	6.4	--	--	20.8	--	--	9.3	9.1	9.7	9.3
Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	0.9	--	--	1.4	--	--	0.5	0.5	0.9	0.7
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft)	--	--	--	--	--	--	--	--	--	36.0	150.0	67.0	15.5	64.5	28.8	8.0	37.1	22.6
Radius of Curvature (ft)	--	--	--	--	--	--	--	--	--	19.0	115.0	49.0	8.2	49.5	21.1	7.9	31.0	15.3
Meander Wavelength (ft)	--	--	--	--	--	--	--	--	--	33.0	155.0	94.0	14.2	66.7	40.4	56.1	70.8	63.6
Meander Width Ratio	--	--	--	--	--	--	--	--	--	1.9	8.1	3.6	1.9	8.1	3.6	0.9	4.2	2.6
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5.7	17.0	10.1
Riffle Slope (ft/ft)	--	--	--	--	--	--	--	--	--	0.006	0.066	0.028	0.008	0.083	0.036	--	--	--
Pool Length (ft)	--	--	--	--	--	--	--	--	--	18.3	62.9	35.1	7.9	27.1	15.1	10.5	31.5	16.6
Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	50.3	105.8	78.9	21.6	45.5	33.9	15.5	105.3	35.6
Substrate (Classification)																		
d50 (mm)		--			--			0.15			3			0.15			0.1	
d84 (mm)		--			--			7.72			105			7.72			6.2	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		--			--			0.0145			0.0090			0.0113			0.0139	
Channel Length(ft)		--			--			1385			590			1654			1474	
Valley Length (ft)		--			--			1264			404			1091			1091	
Sinuosity		--			--			1.10			1.46			1.52			1.35	
Rosgen Classification		--			--			G5c			C4/1			C4			C5	

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B

Reach R2D (790 ft)

PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension - Riffle	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft)	--	--	--	--	--	3.3	3.8	7.2	5.5	16.0	20.6	18.5	--	--	8.0	--	--	8.8
Floodprone Width (ft)	--	--	--	--	--	--	8.4	12.6	10.5	67.2	72.8	67.2	28.2	35.2	30.5	--	--	70.0
BKF Cross Sectional Area (sq. ft.)	--	--	--	--	--	2.7	2.7	5.8	4.3	27.4	33.4	30.3	--	--	5.0	--	--	6.0
BKF Mean Depth (ft)	--	--	--	--	--	0.6	0.70	0.80	0.75	1.57	1.72	1.64	--	--	0.63	--	--	0.68
BKF Max Depth (ft)	--	--	--	--	--	--	1.12	1.65	1.40	1.54	2.36	1.90	0.59	0.90	0.73	--	--	1.02
Width/Depth Ratio	--	--	--	--	--	--	5.3	8.8	7.1	9.3	12.7	11.3	--	--	12.7	--	--	13.0
Entrenchment Ratio	--	--	--	--	--	--	1.8	2.2	2.0	3.5	4.4	3.8	3.5	4.4	3.8	--	--	7.9
Wetted Perimeter (ft)	--	--	--	--	--	--	--	--	--	--	--	20.8	--	--	9.3	--	--	9.3
Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	--	--	--	1.4	--	--	0.5	--	--	0.7
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft)	--	--	--	--	--	--	--	--	--	36.0	150.0	67.0	15.5	64.5	28.8	8.6	42.0	24.8
Radius of Curvature (ft)	--	--	--	--	--	--	--	--	--	19.0	115.0	49.0	8.2	49.5	21.1	8.2	20.1	13.3
Meander Wavelength (ft)	--	--	--	--	--	--	--	--	--	33.0	155.0	94.0	14.2	66.7	40.4	47.7	68.6	61.8
Meander Width Ratio	--	--	--	--	--	--	--	--	--	1.9	8.1	3.6	1.9	8.1	3.6	1.0	4.8	2.8
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6.2	26.4	13.4
Riffle Slope (ft/ft)	--	--	--	--	--	--	--	--	--	0.006	0.066	0.028	0.008	0.083	0.036	0.008	0.062	0.028
Pool Length (ft)	--	--	--	--	--	--	--	--	--	18.3	62.9	35.1	7.9	27.1	15.1	10.1	23.3	15.9
Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	50.3	105.8	78.9	21.6	45.5	33.9	31.8	90.7	51.9
Substrate (Classification)																		
d50 (mm)		--			--			0.06			3			0.06			0.32	
d 84 (mm)		--			--			0.21			105			0.21			0.5	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		--			--			0.0111			0.0090			0.0079			0.0105	
Channel Length(ft)		--			--			549			590			860			790	
Valley Length (ft)		--			--			486			404			571			571	
Sinuosity		--			--			1.13			1.46			1.51			1.38	
Rosgen Classification		--			--			graded			C4/1			C6			C5	

Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R1 (7543 ft)																														
PARAMETERS	Cross Section 9					Cross Section 10					Cross Section 11					Cross Section 12					MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5										
BKF Width (ft)	23.1	23.6	19.5	19.4		18.9	26.0	16.7	17.5		21.2	20.5	26.7	22.7		22.7	23.7	23.1	22.2											
Floodprone Width (ft)	80.3	87.7	77.3	77.8		104.9	105.7	109.1	103.5		129.3	83.3	87.7	81.5		74.9	96.5	80.3	81.9											
BKF Cross Sectional Area (sq. ft.)	45.9	45.1	35.4	32.6		40.7	42.6	34.7	34.9		61.1	44.4	60.5	41.0		48.9	59.2	44.0	41.9											
BKF Mean Depth (ft)	1.99	1.91	1.82	1.68		2.15	1.64	2.08	1.99		2.88	2.16	2.27	1.81		2.16	2.50	1.91	1.89											
BKF Max Depth (ft)	3.95	4.38	3.69	3.80		3.70	3.48	3.94	3.27		6.32	3.59	4.02	3.01		3.22	5.01	4.04	3.96											
Width/Depth Ratio	11.6	12.4	10.7	11.6		8.8	15.9	8.0	8.8		7.4	9.5	11.7	12.6		10.5	9.5	12.1	11.8											
Entrenchment Ratio	3.47	3.59	3.97	4.01		5.55	4.06	6.53	5.90		6.10	4.06	3.29	3.59		3.31	4.08	3.48	3.69											
Wetted Perimeter (ft)	25.1	26.2	22.0	22.2		22.5	27.9	20.5	21.5		25.7	23.6	29.5	25.2		25.0	27.2	25.4	24.7											
Hydraulic Radius (ft)	1.83	1.72	1.61	1.47		1.81	1.53	1.69	1.63		2.37	1.88	2.05	1.63		1.95	2.18	1.73	1.70											

Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2 (7107 ft)																														
PARAMETERS	Cross Section 1					Cross Section 2					Cross Section 3					Cross Section 4				Riffle		Pool								
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)	34.0	37.5	23.5	33.6		25.7	25.2	23.5	25.9		27.6	26.2	25.7	26.3		26.1	26.0	26.1	25.4		28.0	27.7	27.3	27.4						
Floodprone Width (ft)	99.7	110.0	91.3	110.0		118.8	116.5	116.7	120.0		150.2	155.3	164.0	164.0		120.4	120.0	120.0	120.0		104.6	105.0	105.0	105.0						
BKF Cross Sectional Area (sq. ft.)	64.1	64.2	44.1	55.5		49.7	44.2	36.7	43.9		48.7	46.9	40.8	41.3		52.1	55.4	51.8	52.0		45.4	46.2	46.8	46.1						
BKF Mean Depth (ft)	1.89	1.71	1.88	1.65		1.94	1.75	1.56	1.70		1.77	1.79	1.59	1.57		1.99	2.13	1.99	2.05		1.62	1.67	1.71	1.68						
BKF Max Depth (ft)	3.23	3.95	3.21	3.44		4.23	3.48	3.51	3.49		3.49	3.79	3.96	3.94		3.25	3.74	3.53	3.64		3.11	3.09	3.22	3.31						
Width/Depth Ratio	18.0	21.9	12.5	20.4		13.2	14.4	15.1	15.2		15.6	14.6	16.2	16.7		13.1	12.2	13.1	12.4		17.3	16.6	16.0	16.3						
Entrenchment Ratio	2.94	2.93	3.89	3.27		4.63	4.63	4.96	4.64		5.45	5.93	6.38	6.24		4.61	4.62	4.61	4.73		3.73	3.79	3.84	3.83						
Wetted Perimeter (ft)	34.9	39.3	25.0	35.1		28.6	27.1	26.3	28.5		30.0	29.0	28.1	28.7		27.5	27.6	27.9	28.0		29.4	28.9	28.8	28.8						
Hydraulic Radius (ft)	1.84	1.64	1.77	1.58		1.74	1.63	1.39	1.54		1.62	1.62	1.45	1.44		1.90	2.01	1.86	1.86		1.54	1.60	1.62	1.60						

Exhibit Table IX. BEHI and Sediment Export Estimates Little White Oak Creek Stream Restoration / D06027-B															
Time Point	Segment / Reach	Linear Footage or Acreage	Extreme		Very High		High		Moderate		Low		Very Low		Sediment Export
			ft	\%	tons/yr										
Preconstruction 2006	R1	6530			5877	90									455
	R1A	906	906	100											229
	R2	5979	5381	90											767
	R2A	625			625	100									32
	R2B	1713					1713	100							120
	R2D	526	526	100											250
	TOTAL	16279	6813	42	6502	40	1713	11	0	0	0	0	0	0	1853
Monitoring Y3 2010	R1	7543							5280	70	2263	30			189
	R1A	1040									1040	100			1
	R2	7107							7107	100					123
	R2A	336									336	100			3
	R2B	1474									1474	100			4
	R2D	790									790	100			22
	TOTAL	18290	0	0	0	0	0	0	12387	68	5903	32	0	0	342
$\begin{gathered} \text { Monitoring Y5 } \\ 2012 \end{gathered}$	R1	7543													
	R1A	1040													
	R2	7107													
	R2A	336													
	R2B	1474													
	R2D	790													
	TOTAL	18290	0	0	0	0	0	0	0	0	0	0	0	0	0

Exhibit Table X. Verification of Bankfull Events Little White Oak Creek Stream Restoration / D06027-B			
Date of Data Collection	Date of Occurrence	Method	Photo No. (If Available)
$8 / 25 / 08-8 / 27 / 08$	Unknown	Crest Guage	N/A
$10 / 13 / 09-10 / 14 / 09$	Unknown	Crest Guage	N/A
$11 / 01 / 10-11 / 03 / 10$	Unknown	Crest Guage	N/A
$11 / 14 / 11-11 / 15 / 11$	Unknown	Visual Assessment	N/A

Table XI. Categorical Stream Feature Visual Stability Assessment Little White Oak Creek Stream Restoration / D06027-B						
Reach R1 (7543ft)						
Feature	Initial	MY-01	MY-02 ${ }^{\text {a }}$	MY-03 ${ }^{\text {B }}$	MY-04 ${ }^{\text {C }}$	MY-05
Riffles	100\%	100\%	100\%	91\%	90\%	
Pools	100\%	100\%	100\%	84\%	90\%	
Thalwegs	100\%	100\%	100\%	100\%	90\%	
Meanders	100\%	100\%	95\%	95\%	100\%	
Bed General	100\%	100\%	100\%	100\%	100\%	
Structures	100\%	100\%	95\%	88\%	100\%	
Rootwads	100\%	100\%	95\%	98\%	100\%	
Reach R1A (1040ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%	100\%	
Pools	100\%	100\%	100\%	100\%	100\%	
Thalwegs	100\%	100\%	100\%	100\%	100\%	
Meanders	100\%	100\%	100\%	100\%	100\%	
Bed General	100\%	100\%	100\%	100\%	100\%	
Structures	100\%	100\%	100\%	100\%	100\%	
Rootwads	100\%	100\%	100\%	100\%	100\%	
Reach R2 (7107ft)						
Feature	Initial	MY-01	MY-02 ${ }^{\text {A }}$	MY-03	MY-04 ${ }^{\text {C }}$	MY-05
Riffles	100\%	100\%	100\%	100\%	95\%	
Pools	100\%	100\%	100\%	100\%	95\%	
Thalwegs	100\%	100\%	100\%	100\%	95\%	
Meanders	100\%	100\%	95\%	95\%	100\%	
Bed General	100\%	100\%	100\%	100\%	100\%	
Structures	100\%	100\%	95\%	95\%	100\%	
Rootwads	100\%	100\%	95\%	95\%	100\%	
Reach R2A (336ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04 ${ }^{\text {C }}$	MY-05
Riffles	100\%	100\%	100\%	100\%	95\%	
Pools	100\%	100\%	100\%	100\%	95\%	
Thalwegs	100\%	100\%	100\%	100\%	95\%	
Meanders	100\%	100\%	100\%	100\%	100\%	
Bed General	100\%	100\%	100\%	100\%	100\%	
Structures	100\%	100\%	100\%	100\%	100\%	
Rootwads	100\%	100\%	100\%	100\%	100\%	
Reach R2B (1474ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%	100\%	
Pools	100\%	100\%	100\%	100\%	100\%	
Thalwegs	100\%	100\%	100\%	100\%	100\%	
Meanders	100\%	100\%	100\%	100\%	100\%	
Bed General	100\%	100\%	100\%	100\%	100\%	
Structures	100\%	100\%	100\%	100\%	100\%	
Rootwads	100\%	100\%	100\%	100\%	100\%	
Reach R2D (790ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%	100\%	
Pools	100\%	100\%	100\%	100\%	100\%	
Thalwegs	100\%	100\%	100\%	100\%	100\%	
Meanders	100\%	100\%	100\%	100\%	100\%	
Bed General	100\%	100\%	100\%	100\%	100\%	
Structures	100\%	100\%	100\%	100\%	100\%	
Rootwads	100\%	100\%	100\%	100\%	100\%	

Notes:
${ }^{\text {A }}$ The results shown above as less than 100% percent, reflect the construction of beaver dams on the respective reaches during MY-02 (2009).
${ }^{\mathrm{B}}$ The entire project suffered a flood event during MY-03 (2010) causing damage along R1.
${ }^{\mathrm{C}}$ The results shown above as less than 100% percent, reflect the construction of beaver dams on the respective reaches during MY-04 (2011). Beavers in these reaches were trapped and the beaver dams destroyed shortly after the stream surveys were conducted.

Table XII. Stream Problem Areas (Year 4 of 5) Little White Oak Creek Stream Restoration / D06027-B			
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
Beaver dams constructed	Reach -R1- scattered reachwide	Beavers	N/A
Beaver dams constructed	Reach -R2- scattered in upper portions of reach (above R1/R2 confluence)	Beavers	N/A

Note: Beavers were trapped in both reaches R1 and R2 during November 2011. Beaver dams were manually removed in December 2011.

POLK COUNTY

LITTLE WHITE OAK CREEK STREAM RESTORATION SITE

YEAR 4 MONITORING

NOT TO SCALE

	REVVIIINS	(SCALE	
Onte or	Year huowroma	-	110012
1/25/09 wew	Year z wourroma	ossame:	${ }_{\text {NSt }}$
12010 Mu	Year 3 montoma		m"
/12 mu	Year 4 wowromam	citecke:	Ewp
		Appoule:	Ewp
		MULKEY P	(cr muva

- M MUEINEESS \& Consultants

Project enaneer
MULKEY PROJECT MANAGER
WENDEE B. SMITH
MULKEY ENGINER
EMMETT PERDUE, PE
MULKEY SENOR SCIENTITT
THOMAS BARRETT, RF
\square
RoJect Encinerr

BUILDINGS AND OTHER	
Sign	$\stackrel{\bigcirc}{\circ}$
Foundation	－
Area Outline	
Building	\square
School	$\stackrel{\square}{5}$
Church	ちゃ
HYDROLOGY：	
Hydro，Pool or Reservoir	－ニ二二」
River Basin Buffer	88
Flow Arrow ．	
Disappearing Stream	
Spring	
Thalweg	
Top Of Bank．	
Swamp Marsh	＊
Proposed Lateral，Tail，Head Ditch	$\sum \sum>$
Bedrock	\bigcirc

TELEPHONE：

Existing Telephone Pole Telephone Manhole Telephone Booth Telephone Pedestal elephone Pedestal Telephone Cell Tower $\ldots \ldots$ ．．．．．．．
UG Telephone Cable Hand Hole Recorded UG Telephone Cable Recorded WG Telephone Conduit Recorded UG Fiber Optics Cable WATER：
Water Manhole Water Valve Water Hydrant Recorded WG Water Line Above Ground Water Line

TV：
TV Satellite Dish
TV Pedestal
TV Tower
UG TV Cable Hand Hole
Recorded UG TV Cable Recorded UG Fiber Optic Cable miscellaneous： Utility Pole
Utility Pole with Base Utility Located Object Utility Traffic Signal Box Utility Unknown WG Line UG Tank；Water，Gas，Oil AG Tank；Water，Gas，Oil Abandoned According to Utility Records End of Information

SANITARY SEWER：

Sanitary Sewer Manhole Sanitary Sewer Cleanout

Above Ground Sanitary Sewer Recorded SS Forced Main Lin

4／6 Sonitery sever
$4 / 6$ Sonitery sever

PROPOSED STREAM	
STREAM STRUCTURES：	
Rock Crossvane	ocos
Rock Vane	000008
J Hook Rock Vane	8 corg
Flood Plane Interceptor	
Constructed Riffle	
Root Wad	
Structure Number	
Constructed Flood Plane Inter	098

STREAM FEATURES：
Constructed BankfullTop Of Bank
Old Top Of Bank
Constructed Thalwes
Proposed Thalweg ．
Waters Edge
Old Waters Edge
Vernal Pool
Surface Water
Staging Area
Impervious Dike

Temporary Gravel Road
Stone Outlet Sediment Trap
Impervious Stream Channel Plug
Fill Existing Stream Channel．
Vegetation Plot
MISCELLANEOUS：
Photo Point
（a）
Cross Section
Crest Gauge

| | |
| :--- | :--- | :--- |
| ROJECT REFERENCE NO． | SHEET NO |
| LITLE WHITE OAK CREEK | 2 |

SEE SHEET NO。 18 FOR -RIA- PROFILE

SEE SHEET NO. I9 FOR -R2B- PROFILE

SEE SHEET NO. 19 FOR -R2D- PROFILE

	Revisons
outs or	Oscemen
arsorn	,
边	ruas jonemeac
v012 kn^{0}	ruat samoman

APPENDIX B

Vegetation Plot 1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 3

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 4

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 5

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 6

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 7

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 8

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 9

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 10

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 11

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 12

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 13

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegeation Plot 14

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 15

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 16

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 17

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 18

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 19

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 20

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 21

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 22

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 23

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 24

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Appendix C

Photo Point 1; Looking Downstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking Downstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking Upstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking upstream on Reach R2A

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2.5Y1; Looking Downstream Along R2
\square
As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2.5Y1; Looking Upstream Along Reach R2

Not Applicable

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 3; Looking Downstream Along Reach R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 3; Looking Upstream Along Reach R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 3.5Y1; Looking Downstream Along R2\&R2B
\square
As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 3.5Y1; Looking Upstream Along R2

Not Applicable

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 3.5Y1; Looking Upstream Along R2B
\square
As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 4; Looking Downstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 4; Looking Upstream at Confluence of R1\&R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 5; Looking Downstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 5; Looking Upstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 6; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 6; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 7; Looking Downstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 7; Looking Upstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8; Looking Downstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8; Looking Upstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8; Looking Upstream Along R1A

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8.5Y1; Looking Downstream Along R1A

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8.5Y1; Looking Upstream Along R1A

Not Applicable

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 9; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 9; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 9; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 11; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 11; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 11; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

APPENDIX D

Permanent Cross Section 1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Permanent Cross Section 3

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 4

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 5

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 6

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 7

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 8

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 9

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 10

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Permanent Cross Section 11

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 12

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 13

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring: November 2011

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

APPENDIX E

CRロSS SECTIロNS

River Name: Little white Oak Creek (Year 4)
Reach Name: R2
Cross Section Name: (Year 4) Cross Section 1 - Riffle (R2)
Survey Date: 11/14/2011

Cross Section Data Entry			
BM Elevation:		0 ft	
Backsight Rod	Reading:	0 ft	
TAPE	FS	ELEV	NOTE
0	0	877.2	GS
10	0	876.81	GS
20	0	875.32	GS
25	0	874.33	GS
35	0	873.84	GS
40	0	874	GS
44	0	873.83	BKF
48.5	0	872.59	GS
51.5	0	872.17	LEW
54	0	870.99	GS
57	0	871.13	GS
59	0	870.44	GS
60.5	0	870.39	TW
64	0	870.53	GS
65.5	0	872.17	REW
67	0	872.71	GS
69.5	0	873.05	GS
72	0	873.32	GS
76	0	873.62	RB
78	0	873.88	GS
82.5	0	873.99	GS
92	0	874.2	GS
104.5	0	876.62	GS
110	0	876.97	GS

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe 1 877.27	Left 877.27	Right 877.27
Bankfull Elevation (ft)	873.83	873.83	873.83
Floodprone width (ft)	110		
Bankful1 width (ft)	33.62	14.59	19.03
Entrenchment Ratio	3.27		
Mean Depth (ft)	1.65	1.77	1.56
Maximum Depth (ft)	3.44	3.25	3.44
Width/Depth Ratio	20.38	8.24	12.2
Bankfull Area (sq ft)	55.48	25.8	29.68
Wetted Perimeter (ft)	35.08	18.4	23.18
Hydraulic Radius (ft)	1.58	1.4	1.28
Begin BKF Station	44	44	58.59
End BKF Station	77.62	58.59	77.62

Entrainment Formula: Rosgen Modified Shields Curve

Slope
Shear stress (1b/sq ft) Movable Particle (mm)

River Name: Little white Oak Creek (Year 4)
Reach Name: R2
Cross Section Name: (Year 4) Cross Section 2 - Pool (R2)
Survey Date: 11/14/2011

Cross Section Data Entry			
BM Elevation:		0 ft	
Backsight Rod	Reading:	0 ft	
TAPE	FS	ELEV	NOTE
0	0	876.23	GS
10	0	876.13	GS
17	0	876.04	GS
18	0	875.83	GS
28	0	873.52	GS
38	0	873.3	GS
49.5	0	873.34	GS
52	0	872.94	BKF
55	0	872.2	GS
60	0	872.34	GS
62	0	872.15	GS
64	0	871.3	LEW
65	0	869.83	GS
67.5	0	870.07	GS
71	0	869.67	GS
72.5	0	869.45	TW
74.5	0	869.92	GS
75.5	0	871.38	REW
76.5	0	872.66	GS
79	0	873.17	RB
87.5	0	872.88	GS
93.5	0	872.71	GS
108.5	0	875.97	GS
112	0	876.4	GS
120	0	876.1	GS

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	876.43	876.43	876.43
Bankful1 Elevation (ft)	872.94	872.94	872.94
Floodprone width (ft)	120	----	-----
Bankful1 width (ft)	25.87	17.34	8.53
Entrenchment Ratio	4.64	-----	-----
Mean Depth (ft)	1.7	1.36	2.37
Maximum Depth (ft)	3.49	3.11	3.49
Width/Depth Ratio	15.22	12.75	3.6
Bankful1 Area (sq ft)	43.86	23.6	20.25
Wetted Perimeter (ft)	28.45	21.5	13.11
Hydraulic Radius (ft)	1.54	1.1	1.54
Begin BKF Station	52	52	69.34
End BKF Station	77.87	69.34	77.87

Entrainment Formula: Rosgen Modified Shields Curve

Slope
Channe1 Left Side Right Side
Shear stress (lb/sq ft) Movable Particle (mm)

River Name: Little White Oak Creek (Year 4)
Reach Name: R2
Cross Section Name: (Year 4) Cross Section 3 - Pool (R2)
Survey Date: 11/14/2011

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe 1 876.15	Left 876.15	Right 876.15
Bankfull Elevation (ft)	872.21	872.21	872.21
Floodprone width (ft)	164		
Bankfull width (ft)	26.27	21.81	4.46
Entrenchment Ratio	6.24		
Mean Depth (ft)	1.57	1.86	0.19
Maximum Depth (ft)	3.94	3.94	0.38
Width/Depth Ratio	16.73	11.73	23.47
Bankfull Area (sq ft)	41.34	40.5	0.85
Wetted Perimeter (ft)	28.69	24.6	4.86
Hydraulic Radius (ft)	1.44	1.65	0.17

Entrainment Formula: Rosgen Modified Shields Curve

Slope $\begin{array}{lll}\text { Channe1 } & \text { Left Side } & \text { Right Side } \\ 0 & 0 & 0\end{array}$
Shear Stress (1b/sq ft)
Movable Particle (mm)

River Name: Little White Oak Creek (Year 4)
Reach Name: R2
Cross Section Name: (Year 4) Cross Section 4 - Riffle (R2)
Survey Date: 11/15/2011

Cross Sectional Geometry

	Channe 1	Left	Right
Floodprone Elevation (ft)	875.37	875.37	875.
Bankful1 Elevation (ft)	871.73	871.73	871.73
Floodprone Width (ft)	120		
Bankfull Width (ft)	25.39	12.69	12.7
Mean Depth (ft)	2.05	2.1	2
Maximum Depth (ft)	3.64	3.64	3.6
Width/Depth Ratio	12.39	6.04	6.35
Bankfull Area (sq ft)	52	26.64	25.35
Wetted Perimeter (ft)	28.01	17.27	17.71
Hydraulic Radius (ft)	1.86	1.54	1.43
Begin BKF Station	41	41	53.69
End BKF Station	66.39	53.69	66.39

Entrainment Formula: Rosgen Modified Shields Curve

Slope
Channe1 Left Side Right Side
Shear stress (lb/sq ft) Movable Particle (mm)

River Name: Little white Oak Creek (Year 4)

Reach Name: R2
Cross Section Name: (Year 4) Cross Section 5 - Pool (R2)
Survey Date: 11/15/2011

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	871.56	GS
14	0	871.56	GS
29	0	871.42	GS
45	0	871.01	GS
48	0	871.18	LB
54	0	869.95	GS
56	0	869.72	GS
58.5	0	868.7	LEW
60	0	867.99	GS
64	0	867.55	TW
68	0	868.71	GS
69.5	0	869.54	REW
70	0	870.25	GS
73	0	870.86	GS
77	0	871.05	GKF
81.5	0	873.05	GS
88.5	0	873.05	GS
99			GS
105	0	GS	

Cross Sectional Geometry

	Channe 1	Left	Right
Floodprone Elevation (ft)	874.17	874.17	874.17
Bankful1 Elevation (ft)	870.86	870.86	870.86
Floodprone width (ft)	105		
Bankfull width (ft)	27.44	13.72	13.72
Entrenchment Ratio	3.83		
Mean Depth (ft)	1.68	1.6	1.76
Maximum Depth (ft)	3.31	3.23	3.31
width/Depth Ratio	16.33	8.57	7.8
Bankfull Area (sq ft)	46.07	21.97	24.09
Wetted Perimeter (ft)	28.81	17.43	17.83
Hydraulic Radius (ft)	1.6	1.26	1.35
Begin BKF Station	49.56	49.56	63.28
End BKF Station	77	63.28	77

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve
slope
Channe1 Left Side Right Side
shear Stress (lb/sq ft)

Movable Particle (mm)

River Name:	Little white Oak Creek (Year 4)
Reach Name:	R2A
Cross Section Name:	(Year 4) Cross Section $6-$ Riffle (R2A)
Survey Date:	$11 / 15 / 2011$

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	880.22	GS
20	0	880.4	GS
28.5	0	880.1	GS
38.5	0	877.19	GS
42	0	876.68	GS
47	0	876.67	GS
50	0	876.3	GB
53	0	875.86	GS
55	0	875.62	GS
56	0	874.13	GEW
56.3	0	874.02	GS
57	0	874.62	TW
59	0	875.18	GS
60	0	876.1	REW
64	0	879.64	GKF
73	0	879.85	GS
79	0	880	GS
84			GS
90	0	GS	

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe 1 878.18	Left 878.18	Right 878.18
Bankfull Elevation (ft)	876.1	876.1	
Floodprone width (ft)	41.51		
Bankfull width (ft)	12.64	6.32	6.32
Entrenchment Ratio	3.29		
Mean Depth (ft)	0.81	0.79	0.83
Maximum Depth (ft)	2.08	2.08	1.88
Width/Depth Ratio	15.6	8	7.61
Bankfull Area (sq ft)	10.24	4.99	5.25
Wetted Perimeter (ft)	13.78	9.02	8.5
Hydraulic Radius (ft)	0.74	0.55	0.62
Begin BKF Station	51.36	51.36	57.68
End BKF Station	64	57.68	64

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Shear Stress (lb/sq ft)

Movable Particle (mm)

River Name:	Little white Oak Creek (Year 4)
Reach Name:	R2B
Cross Section Name:	(Year 4) Cross Section 7 - Riffle (R2B)
Survey Date:	$11 / 15 / 2011$

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	874.93	GS
10	0	875.08	GS
19	0	874.85	GS
25	0	874.8	GS
33	0	874.73	GS
40	0	874.67	GS
44	0	873.43	GS
49	0	872.96	GS
50	0	872.82	GB
53	0	871.98	GEW
54	0	871.86	GS
55.5	0	872.16	TW
56.5	0	872.82	REW
58	0	872.85	BKF
66	0	874.01	GS
70	0	873.88	GS
80	0		GS
90	0		GS

Cross Sectional Geometry

Floodprone Elevation (ft)	$\begin{aligned} & \text { Channe1 } \\ & 873.78 \end{aligned}$	$\begin{aligned} & \text { Left } \\ & 873.78 \end{aligned}$	$\begin{aligned} & \text { Right } \\ & 873.78 \end{aligned}$
Bankfull Elevation (ft)	872.82	872.82	872.82
Floodprone width (ft)	26.34		
Bankful1 width (ft)	8	4	4
Entrenchment Ratio	3.29		
Mean Depth (ft)	0.56	0.46	0.66
Maximum Depth (ft)	0.96	0.84	0.96
Width/Depth Ratio	14.29	8.7	6.06
Bankful1 Area (sq ft)	4.48	1.82	2.66
Wetted Perimeter (ft)	8.28	4.93	5.03
Hydraulic Radius (ft)	0.54	0.37	0.53
Begin BKF Station	50	50	54
End BKF Station	58	54	58

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Slope $\begin{array}{lll}\text { Channe1 } & \text { Left Side } & { }_{0}^{\text {Right }} \text { Side }\end{array}$ Shear Stress (1b/sq ft) Movable Particle (mm)

River Name:	Little white Oak Creek (Year 4)
Reach Name:	R2D
Cross Section Name:	(Year 4) Cross Section $8-$ Riffle (R2D)
Survey Date:	$11 / 15 / 2011$

Cross Sectional Geometry

	Channe 1	Left	Right
Floodprone Elevation (ft)	871.69	871.69	871.69
Bankfull Elevation (ft)	870.63	870.63	870.63
Floodprone width (ft)	70		
Bankful1 width (ft)	11.04	5.52	5.52
Entrenchment Ratio	6.34		
Mean Depth (ft)	0.66	0.82	0.51
Maximum Depth (ft)	1.06	1.06	0.95
Width/Depth Ratio	16.73	6.73	10.82
Bankfu11 Area (sq ft)	7.33	4.5	2.82
Wetted Perimeter (ft)	11.43	6.7	6.63
Hydraulic Radius (ft)	0.64	0.67	0.43
Begin BKF Station	29.5	29.5	35.02
End BKF Station	40.54	35.02	40.54

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Stope Channe1 Left Side Right Side Shear Stress (1b/sq ft) Movable Particle (mm)

(Year 4) Cross Section 9 - Pool (R1)

River Name: Little White Oak Creek (Year 4)
Reach Name: R1
Cross Section Name: (Year 4) Cross Section 9 - Pool (R1)
Survey Date:

11/14/2011

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	888.5413	GS
5	0	888.6185	GS
10	0	888.5389	GS
15	0	888.344	GS
20	0	887.8469	GS
25	0	886.4981	GS
30	0	884.6068	GS
33	0	884.0379	GS
37	0	883.4719	GS
42	0	883.2812	GS
48	0	883.0651	GS
52	0	882.9403	GS
56	0	882.7071	LB
58	0	881.8772	GS
60	0	880.4105	GS
60.5	0	880.0753	LEW
61	0	878.8247	GS
62	0	878.4645	Tw
64	0	878.7184	GS
65	0	878.9013	GS
66	0	878.953	GS
67	0	879.077	GS
67.5	0	879.1761	GS
68	0	880.0751	REW
69.5	0	881.3271	GS
70.5	0	881.9133	GS
73	0	882.1361	GS
74	0	882.1056	GS
76.5	0	882.2615	BKF
79	0	882.1902	GS
85	0	882.4773	GS
91	0	882.6397	GS
96		883.3926	GS
100	0	884.8813	GS
105	O	886.3531	GS
112	0	888.0522	GS
116	0	888.4478	GS
120	0	888.6651	GS
130	0	888.8689	GS

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	886.06	886.06	886.06
Bankful1 Elevation (ft)	882.26	882.26	882.26
Floodprone width (ft)	77.82	--------	

Bankful1 Width (ft)	19.4	8.87	10.53
Entrenchment Ratio	4.01	----	---1
Mean Depth (ft)	1.68	2.52	0.97
Maximum Depth (ft)	3.8	3.8	3.31
Width/Depth Ratio	11.55	3.52	10.86
Bankful1 Area (sq ft)	32.58	22.39	10.19
Wetted Perimeter (ft)	22.17	13.78	15.01
Hydraulic Radius (ft)	1.47	1.62	0.68
Begin BKF Station	57.08	57.08	65.95
End BKF Station	76.48	65.95	76.48

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Slope
$\begin{array}{ll}\text { Channe } 1 & \text { Left Side } \\ 0 & { }_{0}^{\text {Right }} \text { Side }\end{array}$
Shear stress (1b/sq ft) Movable Particle (mm)

(Year 4) Cross Section 10 - Pool (R1)

- (Year 4) Cross • Bankfull Section 10 Pool (R1)

Wbkf = 17.5
Water Surface a Cross Section a Cross Section • Points Year 0) ool Year 1)

Dbkf = 1.99 Section 10 Pool (R1)

River Name: Little White Oak Creek (Year 4)
Reach Name: R1
Cross Section Name: (Year 4) Cross Section 10 - Pool (R1)
Survey Date: 11/14/2011

Cross Sectional Geometry

	Channe 1	Left	Right
Floodprone Elevation (ft)	884.61	884.61	884.61
Bankfull Elevation (ft)	881.34	881.34	881.34
Floodprone width (ft)	103.46		
Bankfull width (ft)	17.52	8.76	8.76
Entrenchment Ratio	5.9		

Mean Depth (ft)
1.99
1.51
2.77
2.48

Entrainment Formula: Rosgen Modified Shields Curve

Slope
Shear Stress (lb/sq ft) Movable Particle (mm)

.

(Year 4) Cross Section 11 - Pool (R1)

- (Year 4) Cross Bankfull Section 11 Pool (R1) Indicators
Wbkf = 22.7

Section 11 Pool (R1) 11 - Pool (R1 Year 0)
(Year 3) Cros Section 11 Pool (R1)

Abkf = 41

River Name: Little white Oak Creek (Year 4)
Reach Name: R1
Cross Section Name: (Year 4) Cross Section 11 - Pool (R1)
Survey Date:
11/14/2011

	Channel	Left	Right
Floodprone Elevation (ft)	883.12	883.12	883.12
Bankful1 Elevation (ft)	880.1	880.1	880.1
Floodprone Width (ft)	81.51	----	---
Bankful1 width (ft)	22.72	11.36	11.36
Entrenchment Ratio	3.59	----	----
Mean Depth (ft)	1.81	1.93	1.68
Maximum Depth (ft)	3.01	3.01	2.66
Width/Depth Ratio	12.55	5.89	6.76
Bankful1 Area (sq ft)	41.01	21.91	19.1
Wetted Perimeter (ft)	25.17	15.52	14.5
Hydraulic Radius (ft)	1.63	1.41	1.32
Begin BKF Station	59.8	59.8	71.16
End BKF Station	82.52	71.16	82.52

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve
slope

Shear Stress (lb/sq ft) Movable Particle (mm)

River Name: Little white Oak Creek (Year 4)
Reach Name: R1
Cross Section Name: (Year 4) Cross Section 12 - Riffle (R1)
Survey Date:

11/14/2011

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	885.0723	GS
8	0	884.1964	GS
11	0	883.1008	GS
15	0	881.8882	GS
20	0	879.9582	GS
25	0	879.642	GS
31	0	879.8082	GS
35	0	879.6464	GS
38	0	879.4952	BKF
40	0	878.5748	GS
41.5	0	877.5017	LEW
41.5	0	877.0603	GS
42.5	0	875.538	TW
44	0	875.672	GS
45	0	875.7289	GS
46.5	0	876.0992	GS
47	0	876.1654	GS
49	0	877.4647	REW
51.5	0	877.7312	GS
52.5	0	877.7497	GS
54	0	878.1057	GS
56	0	878.6436	GS
57	0	878.7227	GS
59	0	878.9583	GS
61.5	0	880.1896	GS
62.5	0	880.5345	RB
64.5	0	880.8761	GS
69.5	0	880.5869	GS
73.5	0	880.5719	GS
78.5	0	880.3291	GS
84	0	882.0204	GS
90	0	883.17	GS
95	0	883.948	GS
100	0	884.3407	GS

Cross Sectional Geometry

Floodprone Elevation (ft)
Bankfull Elevation (ft)
Floodprone width (ft)
Bankful1 width (ft)
Entrenchment Ratio
Mean Depth (ft)
Maximum Depth (ft)
Width/Depth Ratio

Channe1	Left	Right
883.46	883.46	883.46
879.5	879.5	879.5
81.87	----	---1
22.2	11.1	11.1
3.69	$--1-$	--1
1.89	2.56	1.22
3.96	3.96	2.04
11.75	4.34	9.1

Entrainment Formula: Rosgen Modified Shields Curve

Slope $\begin{array}{lll}\text { Channe1 } & \text { Left Side } & { }_{0}^{\text {Right }} \text { Side }\end{array}$
Shear stress (1b/sq ft) Movable Particle (mm)

(Year 4) Cross Section 13 - Riffle (R1A)

$\begin{array}{ll}\text { (Year 4) Cross } & \text { Bankfull } \\ \text { Section 13- } & \text { Indicator }\end{array}$ Section 13 Riffle (R1A)

Indicators

Wbkf $=7.48$

River Name: Little white Oak Creek (Year 4)
Reach Name: R1A
Cross Section Name: (Year 4) Cross Section 13 - Riffle (R1A)
Survey Date:
11/14/2011

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	888.69	888.69	888.69
Bankful1 Elevation (ft)	887.8	887.8	887.8
Floodprone Width (ft)	125	-----	-----
Bankful1 width (ft)	7.48	4.84	2.64
Entrenchment Ratio	16.71	---1	----1
Mean Depth (ft)	0.52	0.59	0.38
Maximum Depth (ft)	0.89	0.89	0.72
Width/Depth Ratio	14.38	8.2	6.95
Bankful1 Area (sq ft)	3.85	2.86	1.
Wetted Perimeter (ft)	7.73	5.72	3.46
Hydraulic Radius (ft)	0.5	0.5	0.29
Begin BKF Station	55.01	55.01	59.85
End BKF Station	62.49	59.85	62.49

Entrainment Formula: Rosgen Modified Shields Curve

Slope
Shear stress (lb/sq ft) Movable Particle (mm)

Channe1 Left Side Right Side $0 \quad 0 \quad 0$

0

LロNGITUDINAL PRロFILES
(Year 4) R1 Long. Profile (STA 14+00-- 33+74)

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data $1 / 11 / 2012$, 12

RIVERMORPH PROFILE SUMMARY

```
River Name: Little White Oak Creek (Year 4)
Reach Name: R1
Profile Name: (Year 4) R1 Long. Profile (14+00 -- 33+74)
Survey Date: 11/15/2011
```


Survey Data

DIST	CH	WS	BKF	LB	RB
1399.0387	879.613				
1399.0387				883.951	
1399.0387		881.135			
1400.6137					882.73
1405.0587		881.097			
1405.5177	879.04				
1416.6397				883.836	
1417.0697		881.277			
1418.1017	879.698				
1420.9317					882.97
1429.4907	880.791				
1429.6727		881.159			
1433.1367				883.569	
1439.1867	879.742				
1439.3737		881.197			
1445.9537					883.222
1446.9977				882.98	
1450.1477		881.092			
1451.2227	879.35				
1464.2327		880.989			
1464.8447	880.173				
1467.1657					882.467
1470.5297				882.995	
1484.7587					883.413
1486.6067		881.115			
1487.0877				882.85	
1487.0877	880.517				
1511.0477		881.042			
1511.0687	880.121				
1511.5687					883.525
1513.4177				882.84	
1528.3107		880.957			
1529.1587	879.618				
1534.8687					883.58
1542.6127				882.965	
1544.9987		880.985			
1545.6837	879.884				
1549.8907		880.955			
1549.9797	878.199				
1557.3387					883.177
1568.9487	879.149				

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data 1/11/2012, 12

```
1568.9667 880.948
1575.5567 883.197
1578.4667 882.71
1585.5087 880.962
1586.0717 879.318
1601.5747 
1603.9537 879.385
1604.8487 880.275
1606.4607 882.943
1618.4507 880.299
1620.3277 879.211
1624.8547 880.26
1626.7787 878.424
1631.1627 880.197
1632.3717 879.365
1636.6847 
1640.3437 880.159
1640.4207 882.621
1646.1017
1647.8147 880.106
1648.4667 877.718
1659.0027 880.166
1659.2877 879.587
1663.1037
1663.7007
1688.7187
1693.5627
1694.4107 880.141
1695.5017 879.417
1713.3537
1717.5357
1717.5357 879.043
1717.8947 880.227
1725.4237 878.467
1725.4657 880.082
1736.5067 882.763
1737.6197 878.867
1738.4947 880.105
1745.0397 882.535
1752.0177 883.055
1756.8567 878.866
1757.3827 880.074
1766.9987 
1774.0767
1774.3477 880.099
1781.0497
1784.8897 878.465 880.075 882.262 882.136 882.707
1790.0917 882.747
1791.0827 878.167
1791.3057 879.782
1794.6887 882.108
1804.2607 879.849
1804.5627 878.906
1808.0397 882.973
```

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x ~ E-L P s \backslash I n d i v i d u a l ~ L P s \backslash R 1$ Data 1/11/2012, 12


```
    8
```

$\begin{array}{lll}1812.3357 \\ 1819.3087 \\ 1820.2617 & 878.553\end{array} \quad 879.295$
$1831.9537 \quad 882.444$
$\begin{array}{ll}1831.9537 & \\ 1831.9537 & 878.804\end{array}$
1832.0017878 .762
$\begin{array}{ll}1838.5577 & 879.786 \\ 1845.5437 & 878.762\end{array}$
$\begin{array}{ll}1845.5437 \\ 1846.4577 & 878.471\end{array}$
1849.9637
1852.9957
$\begin{array}{ll}1852.9957 & 879.148\end{array}$
1853.8127879 .069
1863.4297
1867.9467
1872.7207878 .474
$1873.4617 \quad 878.891$
1876.2397 878.891
1886.0587
1890.9517878 .273
1892.5567
$1893.1247 \quad 879.654$
$1909.2677 \quad 879.713$
1893.1247
1909.2677
1909.2677
1909.5377
19.609
$\begin{array}{lrl}1893.1247 & 879.654 & \\ 1909.2677 & 879.713 & \\ 1909.2677 & 878.609 & \\ 1909.5377 & & 881.942\end{array}$
1916.0857
1917.4757877 .455
$1917.8477 \quad 879.537$
$\begin{array}{ll}1926.3207 & 879.5 \\ 1930.4637 & \end{array}$
1931.2757878 .642
1935.9787
1942.7067
1944.9887878 .327
$1945.3827 \quad 879.422$
$\begin{array}{ll}1953.1907 & 879.478\end{array}$
$\begin{array}{ll}1953.2497 & \\ 1953.7407 & 878.725\end{array}$
1961.9767
$1971.5157 \quad 879.298$
1971.5157
1971.6517878 .95
1971.6517878 .95
1974.5127
1980.5387
1981.3247877 .763
1983.2347
1990.9117878 .278
1991.0247
1991.4227
2005.3477 $\quad 879.331$
$2005.3477 \quad 879.331$
2006.2937878 .474
2007.0837
$\begin{array}{ll}2007.0837 \\ 2012.8697 & 879.482\end{array}$
2013.0557878 .292
$\begin{array}{ll}2022.8477 & 879.374\end{array}$
2023.3027
2023.8407878 .079
2032.8387
2046.2447
879.786
882.385
881.934
883.12
882.903
881.672
$881.582^{882.555}$
881.582
882.568
881.942
1892.5567
881.942881 .955
882.377
882.067
882.318
882.164
881.847
879.354
878.474
882.82
882.351
881.258
881.92
879.344
881.927
882.151
883.253

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data $1 / 11 / 2012$, 12

```
2047.0677 878.325
2047.3837 879.376
2049.0767 882.076
2053.2547 877.097
2054.2167 879.364
2060.8277 882.719
2066.6527 878.416
2067.0177 879.371
2075.5237 882.117
2076.8867 882.93
2090.6667 879.359
2090.7947 877.78
2095.2327 882.319
2099.1237
2106.1817 878.401
2106.5117 879.362
2116.1367 882.325
2122.6767 878.199
2123.1917 879.447
2127.5057 126.5347 873.322
2136.5347 
2136.7567
2149.7047 879.274
2150.8587 878.08
2154.6897 881.561
2157.7877 881.571
2166.9897
2167.9897
2171.5027 878.176
2171.5837 879.274
2171.8857 881.543
2185.0227 881.735
2193.4247 878.64
2193.9977 879.24
2199.4167 882.122
2200.8467
2209.8647 878.181
2210.6497 879.263
2215.1647 1.5367 879.3
2221.5367 878.188
2225.1927 877.315
2225.2377 879.122
2230.8287 881.195
2231.1677
2239.9487 878.195
2239.9637 879.136
2243.8677 881.948
2249.6377 878.073 879.106 881.341 882.213
2255.0977 881.992
2255.0977 878.104
2255.2077 879.125
2277.4407 880.888
2278.8137 877.294
2279.1717 879.073
2279.2747 881.473
```

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data 1/11/2012, 12

2293.2627	878.343			
2293.2627		879.103		
2298.6247				881.431
2308.6457			880.795	
2314.6877		879.065		
2315.6077	877.947			
2328.2257				881.233
2338.8747			880.908	
2345.9577				881.114
2350.2827			880.481	
2350.2827	878.436			
2350.3837		879.022		
2364.9527			880.539	
2365.5877	877.912			
2366.3817		879		
2375.5697	877.589			
2376.2407		878.998		
2381.7777			880.919	
2382.9597				881.368
2393.4887	877.438			
2394.3767		879.012		
2401.3147			881.073	
2402.7537		878.917		
2403.0107	877.968			
2409.1647				880.938
2410.6037	877.316			
2411.5107		878.614		
2418.6247	875.28			
2419.2537			881.228	
2419.2907		878.565		
2427.3357				881.048
2432.3527	877.842			
2435.6467			881.234	
2453.0697			880.826	
2455.7307		878.511		
2460.4887				881.479
2481.4127	877.134			
2482.0727		878.521		
2486.6117				881.372
2491.9907			880.767	
2499.5747	877.006			
2499.9067		878.488		
2508.1897	876.171			
2508.2737				881.119
2508.8517		878.33		
2515.9497	875.897			
2516.3427		878.408		
2527.7447				881.105
2528.6297		878.347		
2528.7027	877.371			
2531.0967			880.909	
2537.8707		878.414		
2538.3307	876.997			
2539.0647				881.101
2551.6377			880.635	
2553.7577		878.297		
2554.4007	876.989			

2293.2627878 .343
$2293.2627 \quad 879.103$
$2308.6457 \quad 880.795$
$2314.6877 \quad 879.065$
2315.6077877 .947
2328.2257
880.908
880.481
880.539
880.919
881.073
880.938
2410.6037877 .316
$2411.5107 \quad 878.614$
2418.6247875 .28
2419.2537
2419.2907
$\begin{array}{ll}2427.3357 \\ 2432.3527 & 877.842\end{array}$
2435.6467
881.234
880.826
881.479
2481.4127877 .134
$2482.0727 \quad 878.521$
2486.6117
2491.9907
2499.5747877 .006
$2499.9067 \quad 878.488$
2508.1897876 .171
2508.2737
$2508.8517 \quad 878.33$
2515.9497875 .897
$2516.3427 \quad 878.408$
$\begin{array}{lr}2527.7447 \\ 2528.6297 & 878.347\end{array}$
2528.7027877 .371
$\begin{array}{ll}2531.0967 \\ 2537.8707 & 878.414\end{array}$
2538.3307876 .997
2539.0647
880.635

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data $1 / 11 / 2012$, 12

2558.5857				881.053
2564.7997		878.496		
2565.0317	876.614			
2573.8497		878.255		
2574.8087	877.456			
2581.4057				880.817
2585.4277			880.567	
2601.5657				880.758
2604.2037	876.92			
2604.2037		878.246		
2618.4357				880.733
2621.3247		878.235		
2621.5977	877.24			
2627.7687			880.717	
2644.7007				880.591
2652.2597			880.644	
2653.3387		878.246		
2654.0457	877.379			
2661.6417				880.488
2673.8367			880.892	
2675.7837		878.248		
2676.1797	877.312			
2680.1037				879.562
2688.5137		878.196		
2688.6787	876.854			
2688.6787			880.691	
2697.6227			880.314	
2701.2767	877.184			
2701.3117		878.227		
2703.2557				880.007
2704.3927	877.085	878.211880 .099		880.377
2710.6117			880.295	
2711.6857		878.01		
2712.7057				880.135
2735.4807				880.168
2738.3287			880.597	
2741.5217		877.945		
2741.6697	877.053			
2760.0247		877.929		
2760.5157	876.579			
2760.5157			880.239	
2774.5557				879.952
2778.5597	877.32			
2778.7127		877.822		
2782.6377			880.179	
2794.1677		877.84		
2794.3087	876.325			
2799.4347				880.913
2803.3017		877.906		
2803.5107	876.04			
2809.2147		877.834		
2809.7177	874.741			
2819.3487				880.143
2821.6977	876.701			
2821.9647		877.812		
2827.1257			879.889	
2840.3127				880.288

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash$ Year 4 - 2011 \Appendix\Appendix E - LPs\Individual LPs\R1 Data 1/11/2012, 12

```
2840.3127 876.835
2841.4677 877.794
2854.6687 876.837
2855.4677 8
2862.62857 877.787
2862.2857 827.3237 877.752
2874.4947 876.848
2887.6867
2888.2897
2893.1587 876.495
2893.1587
2906.1757
2908.2557
2924.2867
2924.5977 876.577
2931.1897
2936.7247 877.106
2936.8587 877.714
2943.6367 880.223
2947.8837 877.632
2948.1777 876.529
2966.0017
2968.5367
2968.5877 876.741
2973.0677
2974.4827
2987.6957
2996.6287
3002.8317
3003.9407 876.924
3014.0967
3015.8137 876.175
3016.2927 877.224
3020.2227
3031.6757 875.713
3031.6757
3032.6647 877.519
3039.0597
3044.0667
3044.3767 876.674
3051.5787
3058.2677
3064.0347
3064.7027 876.724
3066.0507
3070.5747
3071.6577 876.031
3073.3897 875.538 877.502 879.4952880.535 879.495
3079.1647 879.041
3092.2427 876.26
3092.4687 877.519
3093.0467 879.909
3106.8857 877.485
3107.4287 876.305
3108.0387 879.341
3117.3927 880.234
```

File: G: \Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data 1/11/2012, 12

3127.7767		877.434		
3137.9957			879.005	
3138.1617				880.2
3147.6137		877.457		
3148.5927	875.961			
3153.9127		877.431		
3154.2987				879.756
3154.4127	875.711			
3164.7567	876.199			
3165.1957		877.401		
3166.2327			878.715	
3174.8237				879.839
3179.1577		877.468		
3179.5367	875.779			
3191.1567				879.895
3196.1907			878.612	
3197.4057		877.461		
3197.9997	876.65			
3214.3207				879.572
3216.9917			879.162	
3242.9387				879.11
3243.4317		876.702		
3243.4487	876.114			
3246.5907		876.018		
3247.0597	875.07			
3249.6887			880.173	
3254.5647	874.204			
3256.1887		876.004		
3262.8257				879.404
3270.2467		875.987		
3270.4387	875.151			
3270.6937			879.905	
3289.4537			879.843	
3289.9107		875.935		
3290.8687	874.936			
3303.5027				879.332
3304.1877			879.725	
3317.1807		875.895		
3317.9477	874.948			
3321.9897				879.22
3329.8837			879.18	
3333.0437		875.874		
3333.3877	874.378			
3345.6617			879.384	
3347.4207				878.724
3351.1387		875.806		
3351.6817	875.091			
3369.3267	873.846			
3369.3267			879.145	
3369.4887		875.816		
3380.6167		875.76		
3381.5367				878.749
3381.5367	874.826			
3392.8957			878.994	
3401.5657				878.584
3405.3247	874.495			
3406.3647		875.737		

File: G:\Project $\backslash 2006 \backslash 237.00$ little white oak creek stream restoration \backslash Monitorir
Ig\Year 4-2011\Appendix\Appendix E - LPs Individual LPs 4 R1 Data $1 / 11 / 2012$, 12 $1 g \backslash Y e a r 4-2011 \backslash A p p e n d i x \backslash A p p e n d i x ~ E-L P s \backslash I n d i v i d u a l \operatorname{LPs} \backslash R 1$ Data 1/11/2012, 12

```
3413.7437 878.09
3424.2167 874.333
3424.2167 878.9
3425.0237 875.69
3430.8477 873.668
3431.7707 875.658
3441.4807 875.687
3441.6417 874.526
3446.9577 877.889
3450.0967 879.177
3463.3467 878.977
3464.2377 877.924
3465.1087 875.648
3465.1087 874.627
Cross Section / Bank Profile Locations
Name Type Profile Station
\begin{tabular}{llll} 
(Year 4) Cross Section 9 - Pool (R1)Pool XS & 1784 \\
(Year 4) Cross Section 10 - Pool (R1)Pool XS & 2249 \\
(Year 4) Cross Section 11 - Pool (R1)Pool XS & 2704
\end{tabular}
(Year 4) Cross Section 12 - Riffle (R1)Riffle XS 3073
```

Measurements from Graph
Bankfull Slope: 0.00216

Variable	Min	Avg	Max
S riffle	0.00187	0.00414	0.00746
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	95.89	125.88	161.18
Pool length	26.52	37.54	55.09
Riffle length	14.28	17.95	28.56
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0
Length and depth measurements in feet, slopes in ft			

```
File: G:\Project\2006\237.00 little white oak creek stream restoration\Monitorir
1g\Year 4 - 2011\Appendix\Appendix E - LPs\Individual LPs\R1 Data 1/11/2012, 12
```

RIVERMORPH PROFILE SUMMARY

Notes

River Name: Little White Oak Creek (Year 4)
Reach Name: R1
Profile Name: (Year 4) R1 Long. Profile (14+00 -- 33+74)
Survey Date: 11/15/2011

DIST	Note
1399.0387	LEW
1405.0587	LEW
1417.0697	LEW
1429.6727	LEW
1439.3737	LEW
1450.1477	LEW
1464.2327	LEW
1486.6067	LEW
1511.0477	LEW
1528.3107	LEW
1544.9987	LEW
1549.8907	LEW
1568.9667	LEW
1585.5087	LEW
1604.8487	LEW
1618.6507	LEW
1624.8547	LEW
1631.1627	LEW
1640.3437	LEW
1647.8147	LEW
1659.0027	LEW
1694.4107	LEW
1717.8947	LEW
1725.4657	LEW
1738.4947	LEW
1757.3827	LEW
1774.3477	LEW
1784.8897	XS9 - TW Intersect @ station 1784
1791.3057	LEW
1804.2607	LEW
1819.3087	LEW
1832.0017	LEW
1845.5437	LEW
1852.9957	LEW
1873.4617	LEW
1893.1247	LEW
1909.2677	LEW
1917.8477	LEW
1930.4637	LEW
1945.3827	LEW
1953.1907	LEW
1971.5157	LEW
1980.5387	LEW

```
File: G:\Project\2006\237.00 little white oak creek stream restoration\Monitorir
1g\Year 4 - 2011\Appendix\Appendix E - LPs\Individual LPs\R1 Data 1/11/2012, 12
```

1991.0247 LEW
2005.3477 LEW
2012.8697 LEW
2022.8477 LEW
2047.3837 LEW
2054.2167 LEW
2067.0177 LEW
2090.6667 LEW
2106.5117 LEW
2123.1917 LEW
2136.5347 LEW
2149.7047 LEW
2171.5837 LEW
2193.9977 LEW
2210.6497 LEW
2221.5367 LEW
2225.2377 LEW
2239.9637 LEW
2249.6377 XS10 - TW Intersect @ station 2249
2255.2077 LEW
2279.1717 LEW
2293.2627 LEW
2314.6877 LEW
2350.3837 LEW
2366.3817 LEW
2376.2407 LEW
2394.3767 LEW
2402.7537 LEW
2411.5107 LEW
2419.2907 LEW
2455.7307 LEW
2482.0727 LEW
2499.9067 LEW
2508.8517 LEW
2516.3427 LEW
2528.6297 LEW
2537.8707 LEW
2553.7577 LEW
2564.7997 LEW
2573.8497 LEW
2604.2037 LEW
2621.3247 LEW
2653.3387 LEW
2675.7837 LEW
2688.5137 LEW
2701.3117 LEW
2704.3927 XS11 - TW Intersect @ station 2704
2711.6857 LEW
2741.5217 LEW
2760.0247 LEW
2778.7127 LEW
2794.1677 LEW
2803.3017 LEW
2809.2147 LEW
2821.9647 LEW
2841.4677 LEW
2855.6287 LEW

(Year 4) R1A Long. Profile (STA $0+00-5+00$)

River Name: Little white Oak Creek (Year 4)
Reach Name: R1A
Profile Name: (Year 4) R1A Long. Profile (STA 0+00 -- 5+00)
Survey Date: 11/14/2011

Survey Data

DIST	CH	WS	BKF	LB	RB
1.5268	891.138				
1.5268				891.915	
1.5268		891.817			
7.9068		891.675			
8.0708	891.42				
8.0708				891.78	
11.2498				891.72	
12.3858					892.046
12.4678					891.855
12.6908	891.376				
13.0158		891.675			
16.5188		891.572			
16.6038					891.877
16.6038	891.227				
19.5318		891.579			
19.7158	891.271				
20.4458				891.384	
23.6378		891.469			
23.9068	891.054				
25.0898					891.897
26.4218	890.934				
26.5028		891.407			
28.6868				891.613	
30.6428		891.408			
30.6888	891.158				
31.4608					891.836
32.2598				891.474	
35.5798		891.454			
35.8058 35.8058	890.925				891.662
35.8058 40.2568	890.925	891.436			
40.3488	890.88				
40.4238					891.931
42.6198				891.439	
45.5738		891.307			
45.5918	891.014				
49.8288	890.874				
49.8288				891.323	
49.9568		891.074			
51.0738					891.285
51.8688		891.056			
52.1548	890.777				
53.9708					891.125
55.9718 56.2488	890.607	890.989			
58.4608				891.226	
60.0798		890.966			
60.1718	890.426				
60.3968					891.019

64.2408
65.3308
65.8718
70.7288
74.3898
76.0308
76.2378
78.2548
82.2178
82.7158
83.1818
86.1308
89.8918
90.1498
90.1498
96.6718
96.6858
100.3028
100.6098
107.0228
107.3648
107.3648
110.1138
114.8908
115.1518
116.0028
119.1748
123.1358
125.1078
125.9898
128.1628
128.3568
128.3568
131.8908
131.8908
132.1868
133.2808
137.1838
138.4998
140.4008
143.4238
143.7148
143.7508
144.5298
148.6678
148.8498
150.8048
154.0808
154.7638
155.4318
162.2068
162.2068
162.2068
162.2068
162.4468
162.4808
162.5518
171.4338
171.4338
171.7178
173.5078
176.7248
177.0038
177.7948
178.5668
185.5228
890.548
890.891
890.825
890.141
890.804
890.028
890.75
890.054
890.623
889.981
890.557
889.798
889.724
890.491
890.568
890.525
890.619
890.325
890.361
890.647
890.585
890.321
890.077
890.177
889.974
889.691
889.818
889.265
889.601
889.852
889.781
889.267
889.48
889.214
187.0888
187.0888 191.0348
194.6568
194.7958
197.1188
198.6508
198.9848
201.6748
207.7698
207.7698
208.2608
210.2858
211.8188
214.3768
214.6048
220.6698
220.9268
221.0468
223.6018
225.6518
225.7148
232.6708
232.7978
232.9038
235.1858
235.9238
236.2228
239.0238
240.1238
241.6848
241.9528
246.3108
247.1268
248.5368
251.4098
251.4108
251.4108
256.6338
257.3478
257.5358
258.8648
262.7608
262.7628
263.2328
264.9448
272.5468
275.0808
275.2278
275.2278
279.8848
280.4768
282.1638
288.4748
288.8018
288.8018
291.7068
294.7698
295.0758
296.2008
297.6278
301.8108
302.0088
304.2118
310.7178
310.8938
889.012
888.924
888.711
888.894
888.518
888.264
888.826
888.777
888.144
888.72
889.081
888.849
888.812
889.248
888.784
889.106
888.946
888.793
888.69
888.62
888.606
888.857
888.445
888.308
888.423
888.884
888.351
888.381
887.157
887.874
887.2
888.008
887.885
887.303
887.84
887.857
$888.408^{888.226}$
888.344
311.3488
317.3428
320.4088
321.6738
322.0928
324.3288
324.4058
324.7638
333.2918
334.1128
334.1128
335.9718
339.2458
341.5378
341.6678
346.5578
346.7338
347.6698
348.8718
350.7388
351.6778
357.5318
357.6668
361.2778
361.8748
366.2028
370.3428
370.3428
370.4768
375.0498
375.4018
376.9418
379.7968
381.7508
381.9978
389.4178
390.2388
390.4188
395.5728
398.3788
405.0608
405.3858
405.4758
406.7288
410.2458
410.5048
414.2478
415.2528
415.4158
415.7718
423.1988
423.7908
424.2078
428.6108
433.0268
433.0808
438.9728
439.1498
441.4798
443.5288
450.0468
451.1878
452.5358
453.1098
456.4758
887.77
888.111
887.723
887.162
887.68
887.099
887.511
886.919
886.99
887.465
887.065
887.039
887.461
888.139
888.253
887.937
887.856
887.749
887.912
887.56
886.765
887.369
886.637
887.733
887.607
887.591
888.079
887.317
887.203
886.673
887.96
. 687
887.718
886.905887 .261887 .802887 .803
887.245
886.968
887.12
886.81
886.963
886.346
886.52
886.969
886.512
886.996
886.422
886.892
886.887
886.486
886.275
886.885
887.843
887.361
887.556
886.606
886.858
886.808
887.033
458.4548
458.9558
465.1178
465.1928
465.1928
467.2758
476.9178
476.9768
478.6678
479.2938
486.7648
487.5978
487.6428
487.9888
493.3568
493.3568
493.6438
496.8098
499.6568
500.2958
500.5128
502.1178
503.0268
887.289
887.395
886.704
886.481
887.1
887.588
886.739
886.466
887.236
887.061
886.348
886.343
886.208
886.633
886.936
887.286
886.977
886.922
886.054
886.597
885.994886 .661
886.838

Cross Section / Bank Profile Locations
Name
Type
Profile Station
(Year 4) Cross Section 13 - Riffle (R1A)Riffle XS 379

Measurements from Graph
Bankfull slope: 0.01018

Variable	Min	Avg	Max
S riffle	0.01177	0.0233	0.04578
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	19.94	33.94	44.99
Pool 1 length	7.42	12.01	19.02
Riffle length	5.57	6.73	9.28
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0
Length and depth measurements in feet, slopes in ft/ft.			
RIVERMORPH PROFILE SUMMARY			

River Name: Little white Oak Creek (Year 4)
Reach Name: R1A
Profile Name: (Year 4) R1A Long. Profile (STA 0+00 -- 5+00)
Survey Date: 11/14/2011
DIST Note

1.5268	LEW
7.9068	LEW

```
    16.5188 LEW
    19.5318 LEW
    23.6378 LEW
    26.5028 LEW
    30.6428 LEW
    35.5798 LEW
    40.2568 LEW
    45.5738 LEW
    49.9568 LEW
    51.8688 LEW
    55.9718 LEW
    60.0798 LEW
    65.8718 LEW
    76.0308 LEW
    82.2178 LEW
    89.8918 LEW
    100.3028 LEW
    107.0228 LEW
    115.1518 LEW
    125.1078 LEW
    128.1628 LEW
    132.1868 LEW
    138.4998 LEW
    143.7508 LEW
    148.6678 LEW
    154.7638 LEW
    162.4468 LEW
    162.4808 LEW
    171.7178 LEW
    177.0038 LEW
    187.0888 LEW
    194.6568 LEW
    198.6508 LEW
    208.2608 LEW
    214.3768 LEW
    220.6698 LEW
    225.7148 LEW
    232.6708 LEW
    235.9238 LEW
    241.6848 LEW
    246.3108 LEW
    251.4098 LEW
    256.6338 LEW
    263.2328 LEW
    275.0808 LEW
    279.8848 LEW
    288.4748 LEW
    294.7698 LEW
    301.8108 LEW
    311.3488 LEW
    321.6738 LEW
    324.3288 LEW
    333.2918 LEW
    341.6678 LEW
    347.6698 LEW
    357.5318 LEW
    370.4768 LEW
    375.0498 LEW
    379.7968 XS13 - TW Intersect @ station 379
    381.7508 LEW
    390.2388 LEW
    405.0608 LEW
    410.5048 LEW
    415.7718 LEW
424.2078 LEW
```

433.0268
439.1498 LEW
452.5358 LEW
456.4758 LEW
465.1178 LEW
476.9178 LEW
487.5978 LEW
493.6438 LEW
500.5128 LEW
(Year 4) R2 Long. Profile (STA 25+13--45+60)

River Name: Little white Oak Creek (Year 4)
Reach Name: R2
Profile Name: (Year 4) R2 Long. Profile (STA 25+13 -- 45+60)
Survey Date: 11/15/2011

Survey Data

DIST	CH	WS	BKF	LB	RB
2525.05	869.29				
2525.05				873.75	
$\begin{aligned} & 2526.591 \\ & 2526.792 \end{aligned}$		872.54			874.04
2539.722		872.5			
2540.476	870.9				
2546.674				873.68	
2553.364 2554.592	869.65	872.48			
2562.629					873.89
2564.229				873.44	
2568.977		872.38			
2569.76 2580.097	869.33	872.38			
2580.211	869.61				
2585.006					873.85
$\begin{aligned} & 2588.762 \\ & 2604.392 \end{aligned}$				873.77	873.75
2606.5		872.27			
$\begin{aligned} & 2606.794 \\ & 2615.419 \end{aligned}$	870.08			873.96	
2623.824					873.69
2628.216 2628.909		872.29			
2628.909	870.22			873.93	
2642.925 2644.266	870.39	872.17	873.83	873.62	873.89
2650.329				872.79	
2654.681	870.51				
$\begin{array}{r} 2654.721 \\ 2675.585 \end{array}$		871.59			873.82
2676.388				873.3	
2681.529		871.57			
2681.921	870.1				
$\begin{aligned} & 2701.265 \\ & 2701.856 \end{aligned}$	870.38	871.54			
2705.723				873.5	
2717.678	869.71				874.11
2718.445		871.53			
$\begin{aligned} & 2730.993 \\ & 2734385 \end{aligned}$				873.95	873.63
2736.23	870.38				
2736.481 2744.826		871.51		873.77	
2749.277	869.6				
$\begin{aligned} & 2749.726 \\ & 2752.513 \end{aligned}$		871.53			873.87
2765.982 2766.274	869.28	871.51			

2771.788
2771.86
2772.894 2778.289 2783.994 2784.237 2797.923 2803.989 2808.2
2809.817
2830.599
2832.031
2837.194
2838.396
2869.056
2876.895
2879.768
2880.688
2898.667
2901. 179
2902.246
2906.181
2915.479
2915.479
2923.304
2924.293
2924.322
2934.107
2954.212
2958.315
2958.724
2973.188
2977.944
2977.944
2977.944
2997. 562
3004.965
3005.15
3016.405
3040.414
3043.145
3043.989
3049.891
3060.919
3071.877
3072.092
3079.114
3088.162
3088. 411
3088.553
3103.889
3104.355
3109.503
3116.099
3125.262
3127.149
3137.765
3138.944
3139.296
3140.556
3147.589
3151.224
3153.111
3155.516
3160.746
3171.078

78
871.42
870.23
871.48
871.44
870.05
869.62
871.5
869.94
871.43
869.53
871.46
871.48
869.87
870.04
871.35
871.38
869.97
873.2
873.54
873.27
872.97
872.49
872.88
873.51
873.23
873.54
873.61
873.17
873.46
872.94
872.57
872.76
873.09
872.48
873.14
872.85
873.35
873.1
872.51
873.34
$869.45 \quad 871.3$
868.9
871.26
869.27
869.3
871.4
871.36
869.74

871.37
870.45

$$
871.2
$$

$$
869.06
$$

$$
870.03
$$

3171.078
3173.672
3184.285
3184.285
3186.41
3194.509
3194.509
3195.534
3208.959
3215.606
3218.844
3219.391
3229.372
3231.729
3248.429
3252.878
3253.732
3256.172
3268.055
3268.246
3268.298
3277.337
3293.942
3294.318
3294.833
3304.948
3305.215
3306.188
3316.054
3317.578
3317.863
3334.408
3335.015
3345.624
3346.64
3350.791
3352.529
3357.529
3394.506
3396.962
3397.609
3399.871
3419.399
3419.523
3422.511
3434.174 3436.988 3437.061 3443.129 3454.153 3454.455 3463.785 3464.266 3467.906 3471.387 3476.978
3477.091
3482.844
3482.992
3494.458
3495.487
3495.487
3501.354
3512.688
3513.693
3522.049
870.45
873.07
872.67
868.8
870.46
869.2
870.46
869.05
870.48
870.43
868.32
870.33
869.28
870.25
872.42
872.72
872.44
872.21
871.91
872.46
872.91
872.64
872.78
872.73
873.12
872.85
872.96
872.39
867.12
868.59
872.29
871.88
872.53
869.65
869.67
869.62
871.97
872.45
869.64
869.68
868.63
3523.023
3540.11
3540.597
3544.663
3554.327
3554.949
3556.297
3575.125
3575.452
3577.387
3577.646
3590.748
3591.18
3596.553
3599.9
3607.158
3607.974
3608.385
3609.392
3620.019
3621.178
3621.868
3622.042
3634.169
3637.587
3637.774
3649.188
3658.36
3658.679
3668.5
3668.579
3670.38
3674.314
3675.878
3675.878
3692.934
3693.994
3706.229
3707.001
3729.428
3730.218
3735.118
3737.886
3753.536
3755.902
3761.081
3769.333
3770.882
3778.163
3787.029
3789.752
3791.45
3802.738
3802.918
3806.667
3816.249
3822.783
3823.325
3832.722
3841.016
3842.24
3851.907
3855.398
3857.687
3858.443
3874.423
868.72
869.57
868.42
869.58
869.61
868.62
869.62
867.87
869.56
869.48

867
868.31
869.52
868.27
868.49
869.49
869.54
869.46
867.99
867.6
869.48
869.41
868.15
868.43
869.45
871.88
871.61
868.9
869.48
872.09
872.08
868.8
868.38
868.92
867.99
867.18
869.39
869.15
868.08
867.8
869.28
868.25
869.33
868.7
868.57
$3880.298 \quad 868.18$
3880 . 312
3888.571
3900.059
3904.318
3904.426
3913.437
3922.11
3930.502
3930.581
3949.005
3949.934
3950.295
3950.514
3961.951
3962.198
3972.656
3973.547
3973.815
3985.616
3985.806
3987.279
3999.687
4008.234 4008.389 4015.254 4021.481 4038.184 4038.781 4047.134 4052.54 4061.87
4062.343
4075.791
4076.811
4077.079
4078.302
4088.355
4089. 262
4097.649
4104.941
4105.097
4128.666
4143.831
4143.899
4150.519
4160.847
4165.797
4166.261
4174.541
4183.578
4189.173
4190.444
4192.194
4192.519
4203.34
4211.692
4212.232

4222 . 187
4228.568
4228.995
4233.423
4243.128
4243.128
4244.412
4261.924
868.79
867.42
868.02
869.25
869.21
871.55
871.39
871.58
871.71
871.93
870.61
871.71
872.17
871.55
871.36
871.59
871.41
870.72
871.98
871.72
868.87
$868.87 \quad 871.73 \quad 872.67$
868.89
868.9

867.59	868.69	871.07	872.03
			871.53
867.74	868.69		871.53
	868.77	871.19	
867.36			871.31
868.23	868.84	871.08	
867.21	868.79		871.14

868.8
4269.606
4271.065
4271.638
4294.405
4316.983
4317.411
4319.176
4320.359
4326.176
4326.176
4338.7
4339.368
4339.368
4354.7
4355.027
4368.735
4370.805
4370.96
4377.931
4391.003
4392.843
4392.843
4406.466
4409.616
4409.616
4413.252
4438.599
4438.991
4458.227
4458.787
4458.787
4472.69
4473.502
4481.543
4482.947
4491.603
4493.478
4506.399
4507.017
4507.246
4514.394
4527.832
4528.769
4528.793
4531.908
4537.539
4538.624
4543.094
4553.712
4553.762
4553.977
4565.823
4568.054
4568.581
4568.914
4585.777
4586.06
4586.118
4598.615
4605.405
4605.901
868.23
868.7
868.02
868.79
867.72
868.68
867.7
868.73
868.57
868.13
868.68
866.8
866.94
868.67
868.68
866.74
867.55
867.68
868.69
868.71
867.5
867.54
868.72
868.66
867.93

871
870.52
871.29
870.75
870.82
871.22
871.11
871.23
871.46
871.23
871.03
870.53
871.41
87.

87

87
870.76
870.3
870.66
870.24
870.84
870.02
871.18
871.02
871.45
871.02
870.8
871.63
$870.77 \quad 870.62$

Cross Section / Bank Profile Locations

```
(Year 4) Cross Section 1 - Riffle (R2)Riffle XS
    2644
(Year 4) Cross Section 2 - Pool (R2)Riffle XS
(Year 4) Cross Section 5 - Pool (R2)Pool XS 4543
```

Measurements from Graph
Bankfull slope: 0.00156

Variable	Min	Avg	Max
- S riffle	0.00059	0.00379	0.00933
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	55.29	133.80	208.89
Pool length	30.72	42.24	67.58
Riffle 1ength	26.62	33.45	43.01
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0		0

Length and depth measurements in feet, slopes in ft/ft. 우

RIVERMORPH PROFILE SUMMARY Notes

River Name: Little white Oak Creek (Year 4)
Reach Name: R2
Profile Name: (Year 4) R2 Long. Profile (STA 25+13 -- 45+60)
Survey Date: 11/15/2011

DIST	Note
2526.591	LEW
2539.722	LEW
2553.364	LEW
2568.977	LEW
2580.097	LEW
2606.5	LEW
2628.216	LEW
2644.266	XS1 - TW Intersect @ station 2644
2654.721	LEW
2681.529	LEW
2701.856	LEW
2718.445	LEW
2736.481	LEW
2749.726	LEW
2766.274	LEW
2771.86	LEW
2784.237	LEW
2808.2	LEW
2838.396	LEW
2880.688	LEW
2902.246	LEW
2915.479	LEW
2924.322	LEW
2958.315	LEW
2977.944	LEW
3004.965	LEW

4189.173 LEW
4192.194 LEW
4211.692 LEW
4228.568 LEW
4244.412 LEW
4271.065 LEW
4317.411 LEW 4326.176 LEW 4338.7 LEW 4355.027 LEW 4370.805 LEW 4391.003 LEW 4409.616 LEW 4458.227 LEW 4472.69 LEW 4491.603 LEW 4506.399 LEW 4528.769 LEW 4537.539 LEW 4543.094 XS5 - TW Intersect @ station 4543 4553.977 LEW 4568.054 LEW 4586.06 LEW 4605.405 LEW
(Year 4) R2A Long. Profile (STA 0+00 -- $3+26$)

River Name: Little white Oak Creek (Year 4)
Reach Name: R2A
Profile Name: (Year 4) R2A Long. Profile (STA 0+00 -- 3+26)
Survey Date: 11/14/2011

Survey Data

DIST	CH	WS	BKF	LB	RB
1.549	874.66				
1.549				877.64	
1.549		876.17			
1.549					877.57
11.282				877.17	
11.65		875.83			
12.293					877.56
12.661	875.34				
21.86					877.01
22.933		875.8			
23.205				876.81	
23.205 32.225	875.37				
32.225 34.626					876.88
34.626				876.82	
34.626 34.719	875.33				
34.719		875.78			
40.101					876.71
41.855		875.59			
42.916	875.19				
42.916				877.02	
50.251	875.27				
50.882		875.55			
51.234 51.356				877.16	876.89
62.767	874.75				
62.898				877.08	
62.944		875.35			
64.149				877.19	
64.814 67.187		875.28			876.58
68.334	874.69				
68.334					876.49
74.481					876.77
75.723	874.41				
76.255		875.29			
76.986 88.617				877.05	
88.617 88.621	874.43				
88.621 89.454		875.27			877.13
92.033				877.08	
97.818					876.56
97.818	874.46				
98.48 100.536		875.21			
100.536 109.442				876.91	
109.442 110.622	874.26			877.04	
110.622					876.51
110.861		875.1			
125.388	874.02	874.91	876.1		876.3
129.436				876.24	

132.131
132.665
132.702
144.643
146.203
146.203
149.283
153.509
154.573
163.162
163.162
163.162
174.186
176.775
177.413
177.414
208.336
208.604
210.244
210.408
873.83
875.85
875.13
876.22
875.19
876.2
875.83
873.74
873.72
875.19
876.09
875.63
875.79
875.159
873.55
875.62
875.09
873.15

Cross Section / Bank Profile Locations
Name
(Year 4) Cross Section $6-\operatorname{Riffle}(R 2 A) R i f f l e ~ X S$

Measurements from Graph
Bankful1 slope: 0.01094

Variable	Min	Avg	Max
S riffle	0.00951	0.01320	0.01688
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	56.54	69.70	78.61
Pool length	18.59	20.39	22.07
Riffle length	12.00	12.39	12.78
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0
Length and dep	h measu	in feet	in ft/f
RIVERMORPH PROFILE SUMMARY			
Notes			

River Name: Little white Oak Creek (Year 4)
Reach Name: R2A
Profile Name: (Year 4) R2A Long. Profile (STA 0+00 -- 3+26)
Survey Date: 11/14/2011

DIST	Note
1.549	LEW
11.65	LEW
22.933	LEW
34.719	LEW
41.855	LEW

(Year 4) R2B Long. Profile (STA 9+35--14+86)

River Name: Little white Oak Creek (Year 4)
Reach Name: R2B
Profile Name: (Year 4) R2B Long. Profile (STA 9+35 -- 14+86)
Survey Date: 01/05/2012

Survey Data

DIST	CH	WS	BKF	LB	RB
960.4373	877.440				
960.4373				878.180	
960.4373		877.820			
966.8053					878.630
970.9873				878.280	
971.0583		877.880			
971.1843	877.600				
972.8593					878.690
982.0813					878.640
982.8473	877.430				
983.0943		877.630			
983.6633				878.310	
992.1353				878.010	
993.4733		877.380			
994.1143					878.350
994.1143	877.170				
1003.3213		877.360			
1003.7903	877.090				
1003.7903					878.350
1005.8783				878.300	
1018.4093				877.770	
1018.7283		877.250			
1019.5433	876.810				
1020.8503					877.820
1029.6453		877.120			
1029.6453				877.680	
1029.6453	876.810				
1032.4063					877.680
1045.9933					877.300
1047.0803	876.590				
1047.0803				877.470	
1047.0803		876.790			
1064.0763		876.300			
1064.7933	876.160				
1064.7933					877.290
1065.5683				877.070	
1074.5853	875.760				
1075.4233 1075.4793		875.940			876.690
1077.4803				876.510	
1083.8683	875.530				
1084.2963		875.790			
1084.2963					876.670
1084.4563				876.510	
1096.7943					876.250
1097.4793				876.210	
1097.4923		875.690			
1097.4923	875.420				
1114.8053	875.110				
1114.8053				875.970	

1115.2363
1117.2523
1126. 5633
1127.0773
1127.0773
1128.3093
1148.0753
1148.1723
1148.8523
1149.1773
1157.0173
1158.9923
1158.9923
1159.8373
1171.8283
1172.8623
1172.8633
1173.2793
1192.4213
1192.7473
1192.9033
1194. 2883
1204.3953
1204. 3953
1204. 3953
1207. 2363
1221.0623
1222.3763
1222.9463
1222.9463
1240.1483
1240.7363
1241.8143
1241.8143
1252.2773
1253.7653
1253.9203
1254.4703
1270.6233
1271. 1343
1271. 3353
1272. 1303
1290.5483
1291. 1893
1292.4833
1292.4833
1300.9713
1300.9773
1301.0593
1302.3153
1319. 5903
1319.6703
1319.8613
1320.8893
1330. 5293
1330. 6543
1332.0583
1332.0583
1343.5773
1344.1463
1344.1463
1346. 1923
1359.2433
1374.3543
1374.3543
1375.1903
875.370
875.150
874.920
874.750875 .000
874.750

874.750			875.710
		875.400	
874.590			
			875.780
	874.830		
	874.700	876.200	
874.500			
			875.970
	874.540	875.080	
874.240			
			875.250
	874.570		
874.180			
			$\begin{aligned} & 875.320 \\ & 875.070 \end{aligned}$

874.570
874.200
874.280
874.060
874.220
873.580
873.390
874.050
873.190
873.050
872.920
873.100
872.830
872.680
873.240
873.510
873.510
873.340
873.330
872.480
872.580
872.170
872.650
873.300
871.860872 .120872 .820
871.800
876.100
875.810
875.660
875.710
875.400
875.300
875.780
875.970
875.070
875.070
874.920
875.210
874.890
874.510
874.080
873.920
874.070
873.820
873.790
873.440
872.820
872.620
871.930
1376.5373
872.470
1378.9063
1379.7363
1380.1723
1380.6303
1395.2223
1396.6953
1396.7773
1397.8863
1416.5573
1422.8113
1422.8113
1422.9903
1434.4553
1435.3063
1435.6493
1436.8043
1448.2013
1448.2013
1448.2013
1450.5133
1457.8383
1459.6963
1459.6963
1460.0013
1481.2523
1482.7453
1482.7493
1483.1793
1496.0873
1497.3323
1497.3323
1497.3323868 .900
871.760
871.460
872.380
872.350
871.450
871.600
871.490
871.100
870.960
870.990
871.000
869.820
869.930
869.600
870.530
870.200
870.050

870.390
870.350
870.530
870.530
869.870
869.080
869.320
869.210

Cross Section / Bank Profile Locations
Name
(Year 4) Cross Section 7-- Riffle (R2B)Riffle XS

Measurements from Graph
Bankful1 slope: 0.01586

Variable	Min	Avg	Max
S riffle	0.02151	0.02809	0.03733
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
$\mathrm{P}-\mathrm{P}$	39.10	51.97	64.51
Pool length	15.64	18.25	21.50
Riffle length	7.17	8.73	10.43
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0
Length and depth measurements in feet, slopes in ft/ft.			
RIVERMORPH PROFILE SUMMARY			

River Name: Little white Oak Creek (Year 4)
Reach Name: R2B
Profile Name: (Year 4) R2B Long. Profile (STA 9+35 -- 14+86)
Survey Date: 01/05/2012

(Year 4) R2D Long. Profile (STA 2+84--7+79)

River Name: Little white Oak Creek (Year 4)
Reach Name: R2D
Profile Name: (Year 4) R2D Long. Profile (STA 2+84 -- 7+79)
Survey Date: 11/15/2011

Survey Data

DIST	CH	ws	BKF	LB	RB
283.705	869.66				870.69
$\begin{array}{r}283.947 \\ 284 \\ \hline 178\end{array}$				870.55	
284.178 288.425	869.57	$\begin{aligned} & 869.93 \\ & 869.86 \end{aligned}$	870.63		
298.76				870.47	
298.918	869.37				
298.918 301.44		869.78			870.44
310.103	868.93				
310.103				870.48	
310.99 312.244		869.83			870.58
321.859					870.56
322.593				870.64	
$\begin{aligned} & 322.593 \\ & 322.966 \end{aligned}$	869.49	869.72			
334.508					870.5
$\begin{array}{r}334.776 \\ 334.874 \\ \hline\end{array}$	869.35	869.58			
336.271		869.58		870.44	
345.033				870.15	
$\begin{aligned} & 346.981 \\ & 346.981 \end{aligned}$	868.74	869.52			
346.981					870.37
357.976	868.93				
357.976 359.832		869.51			869.71
364.01				870.02	
380.317				870.06	

380.722
381.191
381.372
398.255
398.706
398.706
402.572
407.7
407.789
407.888
408.295
420.654
420.654
422.149
869.09
869.37
870.06
869.91
868.58
869.01
434.914
438.392
438.392
438.392
447.887
448.26
868.7
868.64
867.95
448.26
868.08
451.317
463.126
463.385
463.433
465.79
478.577
478.577
478.896
482.185
494.573
496.134
496.134
496.156
508.91
509.306
509.498
510.222
521.224
521.358
521.358
522.923
535.364
535.791
535.791
537.295
546.794
547.177
547.682
548.274
548.394
559.504
559.504
560.279
560.42
564.814
566.805
568.125
581.531
582.97
582.97
583.134
608.929
609.322
609.322
613.082
623.799
624.416
625.081
628.878
634.012
634.012
634.083
636.752
646.456
646.456
646.456
649.168
658.573
660.065
660.42
661.703
673.555
675.574
675.791
676.157
685.587
868.08
869.16
868.24
867.88
868.06
867.48
867.77
867.42
867.28
866.99
866.68
866.77
866.58
866.12

866
864.83
865.48
866.17
865.87
865.76
865.86
865.47
865.15
865.24
865.05
865.1
865.24
865.08
865.21
864.79
868.73
868.61
868.92
868.79
868.29
868.45
868.28
867.96
867.57
867.87
867.35
867.89
867.39
867.59
867.12
867.15
867.15
866.67
866.47
866.73

866
865.9
866.04
866.08
866.01
865.96
865.82
866.08
865.75
866.01
866.04
866.03
685.587
690.295
691.065 691.356 696.677
699.201
706.849
706.849
707.563
708.451
717.384
717.384
718.564
719.246
738.108
740.313
740.595
740.595
740.595
864.71
864.4
864.59
864.15
864.42
864.37
863.31
865.73
865.38
865.64
865.49
865.42
865.21
865.25
865.39
865.65
865.16

Cross Section / Bank Profile Locations

Name	Type	Profile Station
		288

Measurements from Graph
Bankfull slope: 0.01319

Variable	Min	Avg	Max
s riffle	0.00728	0.01442	0.02268
S pool	0	0	0
S run	0	0	0
s glide	0	0	0
P - P	26.72	40.55	60.11
Pool 1 length	10.02	12.34	16.7
Riffle length	6.97	9.3	11.62
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0

Length and depth measurements in feet, slopes in ft/ft.

Notes

River Name: Little white Oak Creek (Year 4)
Reach Name: R2D
Profile Name: (Year 4) R2D Long. Profile (STA 2+84 -- 7+79)
Survey Date: 11/15/2011

DIST	Note
284.178	LEW
288.425	XS8 - TW Intersect @ station 288
298.918	LEW
310.99	LEW
322.966	LEW
334.874	LEW

346.981	LEW
359.832	LEW
380.722	LEW
398.255	LEW
407.7	LEW
438.392	LEW
447.887	LEW
463.433	LEW
478.896	LEW
496.156	LEW
509.306	LEW
521.224	LEW
535.364	LEW
547.177	LEW
560.42	LEW
582.97	LEW
608.929	LEW
625.081	LEW
634.083	LEW
646.456	LEW
660.42	LEW
675.574	LEW
691.356	LEW
707.563	LEW
718.564	LEW
740.313	LEW

Madified WalMAN Pebble CロUNTS

River Name:
Reach Name:
Sample Name:
Survey Date:

Little white Oak Creek (Year 4)
R1
R1 Reachwide Pebble Count
10/19/2011

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	25	25.00	25.00
0.062-0.125	17	17.00	42.00
0.125-0.25	12	12.00	54.00
0.25-0.50	15	15.00	69.00
0.50-1.0	21	21.00	90.00
1.0-2.0	5	5.00	95.00
2.0-4.0	2	2.00	97.00
4.0-5.7	2	2.00	99.00
5.7-8.0	1	1.00	100.00
$8.0-11.3$	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.04
D35 (mm)	0.1
D50 (mm)	0.21
D84 (mm)	0.86
D95 (mm)	2
D100 (mm)	8
Silt/c7ay (\%)	25
Sand (\%)	70
Grave1 (\%)	5
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=100$.

River Name:
Reach Name:
Sample Name:
Survey Date:

Little white Oak Creek (Year 4)
R1A
R1A Reachwide Pebble Count 10/19/2011

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	32	64.00	64.00
0.062-0.125	10	20.00	84.00
0.125-0.25	8	16.00	100.00
0.25-0.50	0	0.00	100.00
$0.50-1.0$	0	0.00	100.00
1.0-2.0	0	0.00	100.00
2.0-4.0	0	0.00	100.00
4.0-5.7	0	0.00	100.00
5.7-8.0	0	0.00	100.00
$8.0-11.3$	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00
D16 (mm)	0.02		
D35 (mm)	0.03		
D50 (mm)	0.05		
D84 (mm)	0.13		
D95 (mm)	0.21		
D100 (mm)	0.25		
Silt/Clay (\%)	64		
Sand (\%)	36		
Grave1 (\%)	0		
Cobble (\%)	0		
Boulder (\%)	0		
Bedrock (\%)	0		

Total Particles $=50$ (need at least 60).

River Name: Little white Oak Creek (Year 4)

Reach Name:
Sample Name:
Survey Date:

R2
R2 Reachwide Pebble Count
10/19/2011

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	2	2.00	2.00
0.062-0.125	17	17.00	19.00
0.125-0.25	7	7.00	26.00
0.25-0.50	23	23.00	49.00
$0.50-1.0$	25	25.00	74.00
1.0-2.0	8	8.00	82.00
2.0-4.0	3	3.00	85.00
4.0-5.7	4	4.00	89.00
5.7-8.0	4	4.00	93.00
$8.0-11.3$	5	5.00	98.00
11.3-16.0	1	1.00	99.00
16.0-22.6	1	1.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00
	0.11		
D35 (mm)	0.35		
D50 (mm)	0.52		
D84 (mm)	3.33		
D95 (mm)	9.32		
D100 (mm)	22.6		
Silt/Clay (\%)	2		
Sand (\%)	80		
Grave1 (\%)	18		
Cobble (\%)	0		
Boulder (\%)	0		
Bedrock (\%)	0		

Total Particles $=100$.

River Name: Little white Oak Creek (Year 4)

Reach Name:
Sample Name:
Survey Date:

R2A
R2A Reachwide Pebble Count 10/19/2011

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	0	0.00	0.00
0.062-0.125	3	6.00	6.00
0.125-0.25	0	0.00	6.00
0.25-0.50	6	12.00	18.00
0.50-1.0	4	8.00	26.00
1.0-2.0	11	22.00	48.00
2.0-4.0	1	2.00	50.00
4.0-5.7	1	2.00	52.00
5.7-8.0	3	6.00	58.00
8.0-11.3	11	22.00	80.00
11.3-16.0	5	10.00	90.00
16.0-22.6	1	2.00	92.00
22.6-32.0	2	4.00	96.00
32-45	1	2.00	98.00
45-64	1	2.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.46
D35 (mm)	1.41
D50 (mm)	4
D84 (mm)	13.18
D95 (mm)	29.65
D100 (mm)	64
Silt/clay (\%)	0
Sand (\%)	48
Grave1 (\%)	52
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=50$ (need at least 60).

River Name: Little white Oak Creek (Year 4)

Reach Name:
Sample Name:
Survey Date:

R2B
R2B Reachwide Pebble Count
10/19/2011

Size (mm)	тот \#	ITEM \%	CUM \%
0-0.062	39	78.00	78.00
0.062-0.125	9	18.00	96.00
0.125-0.25	0	0.00	96.00
0.25-0.50	2	4.00	100.00
0.50-1.0	0	0.00	100.00
1.0-2.0	0	0.00	100.00
$2.0-4.0$	0	0.00	100.00
4.0-5.7	0	0.00	100.00
5.7-8.0	0	0.00	100.00
8.0-11.3	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00
D16 (mm)	0.01		
D35 (mm)	0.03		
D50 (mm)	0.04		
D84 (mm)	0.08		
D95 (mm)	0.12		
D100 (mm)	0.5		
Silt/clay (\%)	78		
Sand (\%)	22		
Gravel (\%)	0		
Cobble (\%)	0		
Boulder (\%) Bedrock (\%)	0		
Bedrock (\%)	0		

Total Particles $=50$ (need at least 60).
(Year 4) R2D Reachwide Pebble Count

- R2D Reachwide Pebble Count (PC)
- (Year 0) R2D Reachwide Pebble Count (PC)

A (Year 1) R2D Reachwide Pebble Count (PC)
(Year 2) R2D Reachwide Pebble Count (PC)

- (Year 3) R2D Reachwide Pebble Count (PC)

River Name: Little white Oak Creek (Year 4)

Reach Name:
Sample Name:
Survey Date:

R2D
R2D Reachwide Pebble Count 10/19/2011

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	19	38.00	38.00
0.062-0.125	20	40.00	78.00
0.125-0.25	5	10.00	88.00
0.25-0.50	6	12.00	100.00
$0.50-1.0$	0	0.00	100.00
1.0-2.0	0	0.00	100.00
2.0-4.0	0	0.00	100.00
4.0-5.7	0	0.00	100.00
5.7-8.0	0	0.00	100.00
$8.0-11.3$	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00
D16 (mm)	0.03		
D35 (mm)	0.06		
D50 (mm)	0.08		
D84 (mm)	0.2		
D95 (mm)	0.4		
D100 (mm)	0.5		
Silt/Clay (\%)	38		
Sand (\%)	62		
Grave1 (\%)	0		
Cobble (\%)	0		
Boulder (\%)	0		
Bedrock (\%)	0		

Total Particles $=50$ (need at least 60).

CREST
GAUGE

Project Name: County, State:		Little White Oak Creek Polk County, North Carolina			Installation Date: Year of Sampling		12/4/		007			
Crest Gauge Information			2008	2008	2009	2010			2011	2012		
Gauge ID	Bankfull Elevation (ft)	Zero Elevation (ft)	Year 0	Year 1	Year 2	Year $3^{\text {a }}$	Year 4	Year 5	Total Exceedance by Gauge	Reach		
$1^{\text {bc }}$	886.12	885.87	N/A	1	1	1	1	0	4	R1 (U/S End)		
$2^{\text {c }}$	882.04	882.04	N/A	1	1	1	1	0	4	R1A (D/S End)		
$3^{\text {bc }}$	875.80	875.30	N/A	1	1	1	1	0	4	R1 (U/S NC 9)		
$4^{\text {bc }}$	878.10	877.96	N/A	1	1	1	1	0	4	R2 (U/S End)		
$5^{\text {c }}$	876.30	876.26	N/A	0	1	1	1	0	3	R2A (Middle)		
$6^{\text {c }}$	871.70	871.51	N/A	1	1	1	1	0	4	R2B (D/S End)		
$7^{\text {bc }}$	869.90	869.14	N/A	1	1	1	1	0	4	R2 (Confluence)		
$8^{\text {d }}$	866.93	866.67	N/A	0	0	1	1	0	2	R2D (D/S End)		
${ }^{\text {a }}$ A bankfull oc completed sub ${ }^{\text {b }}$ Gauge was e requirement of ${ }^{\text {c }}$ These gauge investigations no ${ }^{\mathrm{d}}$ This gauge lo event during th	urrence is document erged by flood wate her damaged or mis wo bankful occurren ocations were not m ted debris wracklin ation was not samp past year.	ed for each gauge rs. sing following Year ces over the 5-year onitored since they es well above the ba led during Year 4.	${ }^{c}$ These gauge locations were not monitored since they have already met the minimum requirement of two bankful occurrences over the 5 -year monitoring However, field investigations noted debris wracklines well above the bankfull elevation on the crest gauge indicating a bankfull event during the past year. ${ }^{d}$ This gauge location was not sampled during Year 4. However, field investigations noted debris wracklines well above the bankfull elevation on the crest gauge indicating a bankfull event during the past year.						flooding indicated tha ears as they have already 5 -year monitoring How tion on the crest gauge	crest gauges were y met the minimum ver, field ndicating a bankfull		

